Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators)

This work is a continuation of the paper [1] (Part I), in which the weakly hereditary and idempotent closure operators of the category R-Mod are described. Using the results of [1], in this part the other classes of closure operators C are characterized by the associated functions F₁с and F₂с which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2013
1. Verfasser: Kashu, A.I.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2013
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/152310
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators) / A.I. Kashu // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 1. — С. 81–95. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-152310
record_format dspace
spelling Kashu, A.I.
2019-06-09T17:17:44Z
2019-06-09T17:17:44Z
2013
Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators) / A.I. Kashu // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 1. — С. 81–95. — Бібліогр.: 9 назв. — англ.
1726-3255
2010 MSC:16D90, 16S90, 06B23.
https://nasplib.isofts.kiev.ua/handle/123456789/152310
This work is a continuation of the paper [1] (Part I), in which the weakly hereditary and idempotent closure operators of the category R-Mod are described. Using the results of [1], in this part the other classes of closure operators C are characterized by the associated functions F₁с and F₂с which separate in every module M ∈ R-Mod the sets of C-dense submodules and C-closed submodules. This method is applied to the classes of hereditary, maximal, minimal and cohereditary closure operators.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators)
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators)
spellingShingle Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators)
Kashu, A.I.
title_short Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators)
title_full Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators)
title_fullStr Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators)
title_full_unstemmed Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators)
title_sort closure operators in the categories of modules. part ii (hereditary and cohereditary operators)
author Kashu, A.I.
author_facet Kashu, A.I.
publishDate 2013
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description This work is a continuation of the paper [1] (Part I), in which the weakly hereditary and idempotent closure operators of the category R-Mod are described. Using the results of [1], in this part the other classes of closure operators C are characterized by the associated functions F₁с and F₂с which separate in every module M ∈ R-Mod the sets of C-dense submodules and C-closed submodules. This method is applied to the classes of hereditary, maximal, minimal and cohereditary closure operators.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/152310
citation_txt Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators) / A.I. Kashu // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 1. — С. 81–95. — Бібліогр.: 9 назв. — англ.
work_keys_str_mv AT kashuai closureoperatorsinthecategoriesofmodulespartiihereditaryandcohereditaryoperators
first_indexed 2025-11-27T11:38:32Z
last_indexed 2025-11-27T11:38:32Z
_version_ 1850852197742411776