Ideals in (Z⁺, ≤D)
A convolution is a mapping C of the set Z⁺ of positive integers into the set P(Z⁺) of all subsets of Z⁺ such that every member of C(n) is a divisor of n. If for any n, D(n) is the set of all positive divisors of n, then D is called the Dirichlet's convolution. It is well known that Z⁺ has the s...
Gespeichert in:
| Veröffentlicht in: | Algebra and Discrete Mathematics |
|---|---|
| Datum: | 2013 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2013
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/152313 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Ideals in (Z⁺, ≤D) / S. Sagi // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 1. — С. 107–115. — Бібліогр.: 9 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | A convolution is a mapping C of the set Z⁺ of positive integers into the set P(Z⁺) of all subsets of Z⁺ such that every member of C(n) is a divisor of n. If for any n, D(n) is the set of all positive divisors of n, then D is called the Dirichlet's convolution. It is well known that Z⁺ has the structure of a distributive lattice with respect to the division order. Corresponding to any general convolution C, one can define a binary relation ≤C on Z⁺ by 'm ≤ C n if and only if m ∈ C(n) '. A general convolution may not induce a lattice on Z⁺. However most of the convolutions induce a meet semi lattice structure on Z⁺. In this paper we consider a general meet semi lattice and study it's ideals and extend these to (Z⁺, ≤D), where D is the Dirichlet's convolution.
|
|---|---|
| ISSN: | 1726-3255 |