Inverse semigroups generated by group congruences. The Möbius functions

The computation of the Möbius function of a Möbius category that arises from a combinatorial inverse semigroup has a distinctive feature. This computation is done on the field of finite posets. In the case of two combinatorial inverse semigroups, order isomorphisms between corresponding finite poset...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2013
1. Verfasser: Schwab, E.D.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2013
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/152314
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Inverse semigroups generated by group congruences. The Möbius functions / E.D. Schwab // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 1. — С. 116–126. — Бібліогр.: 23 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:The computation of the Möbius function of a Möbius category that arises from a combinatorial inverse semigroup has a distinctive feature. This computation is done on the field of finite posets. In the case of two combinatorial inverse semigroups, order isomorphisms between corresponding finite posets reduce the computation to one of the semigroups. Starting with a combinatorial inverse monoid and using a group congruence we construct a combinatorial inverse semigroup such that the Möbius function becomes an invariant to this construction. For illustration, we consider the multiplicative analogue of the bicyclic semigroup and the free monogenic inverse monoid.
ISSN:1726-3255