Non-contracting groups generated by (3,2)-automata

We add to the classification of groups generated by 3-state automata over a 2-letter alphabet given by Bondarenko et al., by showing that a number of the groups in the classification are non-contracting. We show that the criterion we use to prove a self-similar action is non-contracting also implies...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2014
Hauptverfasser: Davis, N., Elder, M., Reeves, L.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2014
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/152338
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Non-contracting groups generated by (3,2)-automata / N. Davis, M. Elder, L. Reeves // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 1. — С. 20–32. — Бібліогр.: 4 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-152338
record_format dspace
spelling Davis, N.
Elder, M.
Reeves, L.
2019-06-10T10:51:59Z
2019-06-10T10:51:59Z
2014
Non-contracting groups generated by (3,2)-automata / N. Davis, M. Elder, L. Reeves // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 1. — С. 20–32. — Бібліогр.: 4 назв. — англ.
1726-3255
2010 MSC:20E08, 20F65, 68Q45.
https://nasplib.isofts.kiev.ua/handle/123456789/152338
We add to the classification of groups generated by 3-state automata over a 2-letter alphabet given by Bondarenko et al., by showing that a number of the groups in the classification are non-contracting. We show that the criterion we use to prove a self-similar action is non-contracting also implies that the associated self-similarity graph introduced by Nekrashevych is non-hyperbolic.
The first author was supported by an Australian Postgraduate Award. The second and third authors are supported by Australian Research Council grants FT110100178, DP120100996 and DP1096912.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Non-contracting groups generated by (3,2)-automata
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Non-contracting groups generated by (3,2)-automata
spellingShingle Non-contracting groups generated by (3,2)-automata
Davis, N.
Elder, M.
Reeves, L.
title_short Non-contracting groups generated by (3,2)-automata
title_full Non-contracting groups generated by (3,2)-automata
title_fullStr Non-contracting groups generated by (3,2)-automata
title_full_unstemmed Non-contracting groups generated by (3,2)-automata
title_sort non-contracting groups generated by (3,2)-automata
author Davis, N.
Elder, M.
Reeves, L.
author_facet Davis, N.
Elder, M.
Reeves, L.
publishDate 2014
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description We add to the classification of groups generated by 3-state automata over a 2-letter alphabet given by Bondarenko et al., by showing that a number of the groups in the classification are non-contracting. We show that the criterion we use to prove a self-similar action is non-contracting also implies that the associated self-similarity graph introduced by Nekrashevych is non-hyperbolic.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/152338
citation_txt Non-contracting groups generated by (3,2)-automata / N. Davis, M. Elder, L. Reeves // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 1. — С. 20–32. — Бібліогр.: 4 назв. — англ.
work_keys_str_mv AT davisn noncontractinggroupsgeneratedby32automata
AT elderm noncontractinggroupsgeneratedby32automata
AT reevesl noncontractinggroupsgeneratedby32automata
first_indexed 2025-12-07T17:16:17Z
last_indexed 2025-12-07T17:16:17Z
_version_ 1850870624274087936