Algorithmic computation of principal posets using Maple and Python

We present symbolic and numerical algorithms for a computer search in the Coxeter spectral classification problems. One of the main aims of the paper is to study finite posets I that are principal, i.e., the rational symmetric Gram matrix GI : = 1/2[CI+CItr] ∈ MI(Q) of I is positive semi-definite of...

Full description

Saved in:
Bibliographic Details
Published in:Algebra and Discrete Mathematics
Date:2014
Main Authors: Gasiorek, M., Simson, D., Zajac, K.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2014
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/152339
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Algorithmic computation of principal posets using Maple and Python / M. Gasiorek, D. Simson, K. Zajac // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 1. — С. 33–69. — Бібліогр.: 56 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-152339
record_format dspace
spelling Gasiorek, M.
Simson, D.
Zajac, K.
2019-06-10T10:53:58Z
2019-06-10T10:53:58Z
2014
Algorithmic computation of principal posets using Maple and Python / M. Gasiorek, D. Simson, K. Zajac // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 1. — С. 33–69. — Бібліогр.: 56 назв. — англ.
1726-3255
2010 MSC:06A11, 15A63, 68R05, 68W30.
https://nasplib.isofts.kiev.ua/handle/123456789/152339
We present symbolic and numerical algorithms for a computer search in the Coxeter spectral classification problems. One of the main aims of the paper is to study finite posets I that are principal, i.e., the rational symmetric Gram matrix GI : = 1/2[CI+CItr] ∈ MI(Q) of I is positive semi-definite of corank one, where CI ∈ MI(Z) is the incidence matrix of I. With any such a connected poset I, we associate a simply laced Euclidean diagram DI ∈ {A˜n, D˜n, E˜₆, E˜₇, E˜₈}, the Coxeter matrix CoxI := −CI ⋅ C−trI, its complex Coxeter spectrum speccI, and a reduced Coxeter number cI. One of our aims is to show that the spectrum speccI of any such a poset I determines the incidence matrix CI (hence the poset I) uniquely, up to a Z-congruence. By computer calculations, we find a complete list of principal one-peak posets I (i.e., I has a unique maximal element) of cardinality ≤ 15, together with speccI, cI, the incidence defect ∂I : ZI → Z, and the Coxeter-Euclidean type DI. In case when DI ∈ {A˜n, D˜n, E˜₆, E˜₇, E˜₈} and n := |I| is relatively small, we show that given such a principal poset I, the incidence matrix CI is Z-congruent with the non-symmetric Gram matrix GˇDI of DI, speccI = speccDI and cˇI = cˇDI. Moreover, given a pair of principal posets I and J, with |I| = |J| ≤ 15, the matrices CI and CJ are Z-congruent if and only if speccI = speccJ.
Supported by Polish Research Grant NCN 2011/03/B/ST1/00824.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Algorithmic computation of principal posets using Maple and Python
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Algorithmic computation of principal posets using Maple and Python
spellingShingle Algorithmic computation of principal posets using Maple and Python
Gasiorek, M.
Simson, D.
Zajac, K.
title_short Algorithmic computation of principal posets using Maple and Python
title_full Algorithmic computation of principal posets using Maple and Python
title_fullStr Algorithmic computation of principal posets using Maple and Python
title_full_unstemmed Algorithmic computation of principal posets using Maple and Python
title_sort algorithmic computation of principal posets using maple and python
author Gasiorek, M.
Simson, D.
Zajac, K.
author_facet Gasiorek, M.
Simson, D.
Zajac, K.
publishDate 2014
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description We present symbolic and numerical algorithms for a computer search in the Coxeter spectral classification problems. One of the main aims of the paper is to study finite posets I that are principal, i.e., the rational symmetric Gram matrix GI : = 1/2[CI+CItr] ∈ MI(Q) of I is positive semi-definite of corank one, where CI ∈ MI(Z) is the incidence matrix of I. With any such a connected poset I, we associate a simply laced Euclidean diagram DI ∈ {A˜n, D˜n, E˜₆, E˜₇, E˜₈}, the Coxeter matrix CoxI := −CI ⋅ C−trI, its complex Coxeter spectrum speccI, and a reduced Coxeter number cI. One of our aims is to show that the spectrum speccI of any such a poset I determines the incidence matrix CI (hence the poset I) uniquely, up to a Z-congruence. By computer calculations, we find a complete list of principal one-peak posets I (i.e., I has a unique maximal element) of cardinality ≤ 15, together with speccI, cI, the incidence defect ∂I : ZI → Z, and the Coxeter-Euclidean type DI. In case when DI ∈ {A˜n, D˜n, E˜₆, E˜₇, E˜₈} and n := |I| is relatively small, we show that given such a principal poset I, the incidence matrix CI is Z-congruent with the non-symmetric Gram matrix GˇDI of DI, speccI = speccDI and cˇI = cˇDI. Moreover, given a pair of principal posets I and J, with |I| = |J| ≤ 15, the matrices CI and CJ are Z-congruent if and only if speccI = speccJ.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/152339
citation_txt Algorithmic computation of principal posets using Maple and Python / M. Gasiorek, D. Simson, K. Zajac // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 1. — С. 33–69. — Бібліогр.: 56 назв. — англ.
work_keys_str_mv AT gasiorekm algorithmiccomputationofprincipalposetsusingmapleandpython
AT simsond algorithmiccomputationofprincipalposetsusingmapleandpython
AT zajack algorithmiccomputationofprincipalposetsusingmapleandpython
first_indexed 2025-12-07T18:36:01Z
last_indexed 2025-12-07T18:36:01Z
_version_ 1850875641153454080