Some combinatorial problems in the theory of partial transformation semigroups

Let Xn = {1,2,…,n}. On a partial transformation α : Dom α ⊆ Xn → Im α ⊆ Xn of Xn the following parameters are defined: the breadth or width of α is ∣ Dom α ∣, the collapse of α is c(α) = ∣ ∪t∈Imα{tα⁻¹ :∣ tα⁻¹ ∣≥ 2} ∣, fix of α is f(α) = ∣ {x ∈ Xn : xα = x} ∣, the height of α is ∣ Imα ∣, and the rig...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Algebra and Discrete Mathematics
Дата:2014
Автор: Umar, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2014
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/152350
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Some combinatorial problems in the theory of partial transformation semigroups / A. Umar // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 1. — С. 110–134. — Бібліогр.: 56 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-152350
record_format dspace
spelling Umar, A.
2019-06-10T11:03:52Z
2019-06-10T11:03:52Z
2014
Some combinatorial problems in the theory of partial transformation semigroups / A. Umar // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 1. — С. 110–134. — Бібліогр.: 56 назв. — англ.
1726-3255
2010 MSC:20M17, 20M20, 05A10, 05A15.
https://nasplib.isofts.kiev.ua/handle/123456789/152350
Let Xn = {1,2,…,n}. On a partial transformation α : Dom α ⊆ Xn → Im α ⊆ Xn of Xn the following parameters are defined: the breadth or width of α is ∣ Dom α ∣, the collapse of α is c(α) = ∣ ∪t∈Imα{tα⁻¹ :∣ tα⁻¹ ∣≥ 2} ∣, fix of α is f(α) = ∣ {x ∈ Xn : xα = x} ∣, the height of α is ∣ Imα ∣, and the right [left] waist of α is max(Imα) [min(Imα)]. The cardinalities of some equivalences defined by equalities of these parameters on Tn, the semigroup of full transformations of Xn, and Pn the semigroup of partial transformations of Xn and some of their notable subsemigroups that have been computed are gathered together and the open problems highlighted.
The ideas for this work were formed during a one month stay at Wilfrid Laurier University in the Summer of 2007. This paper is based on the talk I gave at the 5th NBSAN Meeting, University of St Andrews, May 2010. I would like to thank Professor A. Laradji for his useful suggestions and encouragement. My sincere thanks also to Professor S. Bulman-Fleming and the Department of Mathematics and Statistics, Wilfrid Laurier University.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Some combinatorial problems in the theory of partial transformation semigroups
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Some combinatorial problems in the theory of partial transformation semigroups
spellingShingle Some combinatorial problems in the theory of partial transformation semigroups
Umar, A.
title_short Some combinatorial problems in the theory of partial transformation semigroups
title_full Some combinatorial problems in the theory of partial transformation semigroups
title_fullStr Some combinatorial problems in the theory of partial transformation semigroups
title_full_unstemmed Some combinatorial problems in the theory of partial transformation semigroups
title_sort some combinatorial problems in the theory of partial transformation semigroups
author Umar, A.
author_facet Umar, A.
publishDate 2014
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description Let Xn = {1,2,…,n}. On a partial transformation α : Dom α ⊆ Xn → Im α ⊆ Xn of Xn the following parameters are defined: the breadth or width of α is ∣ Dom α ∣, the collapse of α is c(α) = ∣ ∪t∈Imα{tα⁻¹ :∣ tα⁻¹ ∣≥ 2} ∣, fix of α is f(α) = ∣ {x ∈ Xn : xα = x} ∣, the height of α is ∣ Imα ∣, and the right [left] waist of α is max(Imα) [min(Imα)]. The cardinalities of some equivalences defined by equalities of these parameters on Tn, the semigroup of full transformations of Xn, and Pn the semigroup of partial transformations of Xn and some of their notable subsemigroups that have been computed are gathered together and the open problems highlighted.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/152350
citation_txt Some combinatorial problems in the theory of partial transformation semigroups / A. Umar // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 1. — С. 110–134. — Бібліогр.: 56 назв. — англ.
work_keys_str_mv AT umara somecombinatorialproblemsinthetheoryofpartialtransformationsemigroups
first_indexed 2025-12-07T18:48:09Z
last_indexed 2025-12-07T18:48:09Z
_version_ 1850876404323844096