Relative symmetric polynomials and money change problem

This article is devoted to the number of non-negative solutions of the linear Diophantine equation a₁t₁ + a₂t₂ + ⋯ + antn = d, where a₁,…,an, and d are positive integers. We obtain a relation between the number of solutions of this equation and characters of the symmetric group, using relative symme...

Full description

Saved in:
Bibliographic Details
Published in:Algebra and Discrete Mathematics
Date:2013
Main Author: Shahryari, M.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2013
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/152353
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Relative symmetric polynomials and money change problem / M. Shahryari // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 2. — С. 287–292. — Бібліогр.: 3 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:This article is devoted to the number of non-negative solutions of the linear Diophantine equation a₁t₁ + a₂t₂ + ⋯ + antn = d, where a₁,…,an, and d are positive integers. We obtain a relation between the number of solutions of this equation and characters of the symmetric group, using relative symmetric polynomials. As an application, we give a necessary and sufficient condition for the space of the relative symmetric polynomials to be non-zero.
ISSN:1726-3255