Relative symmetric polynomials and money change problem

This article is devoted to the number of non-negative solutions of the linear Diophantine equation a₁t₁ + a₂t₂ + ⋯ + antn = d, where a₁,…,an, and d are positive integers. We obtain a relation between the number of solutions of this equation and characters of the symmetric group, using relative symme...

Full description

Saved in:
Bibliographic Details
Published in:Algebra and Discrete Mathematics
Date:2013
Main Author: Shahryari, M.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2013
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/152353
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Relative symmetric polynomials and money change problem / M. Shahryari // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 2. — С. 287–292. — Бібліогр.: 3 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-152353
record_format dspace
spelling Shahryari, M.
2019-06-10T11:10:02Z
2019-06-10T11:10:02Z
2013
Relative symmetric polynomials and money change problem / M. Shahryari // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 2. — С. 287–292. — Бібліогр.: 3 назв. — англ.
1726-3255
2010 MSC:Primary 05A17, Secondary 05E05 and 15A69.
https://nasplib.isofts.kiev.ua/handle/123456789/152353
This article is devoted to the number of non-negative solutions of the linear Diophantine equation a₁t₁ + a₂t₂ + ⋯ + antn = d, where a₁,…,an, and d are positive integers. We obtain a relation between the number of solutions of this equation and characters of the symmetric group, using relative symmetric polynomials. As an application, we give a necessary and sufficient condition for the space of the relative symmetric polynomials to be non-zero.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Relative symmetric polynomials and money change problem
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Relative symmetric polynomials and money change problem
spellingShingle Relative symmetric polynomials and money change problem
Shahryari, M.
title_short Relative symmetric polynomials and money change problem
title_full Relative symmetric polynomials and money change problem
title_fullStr Relative symmetric polynomials and money change problem
title_full_unstemmed Relative symmetric polynomials and money change problem
title_sort relative symmetric polynomials and money change problem
author Shahryari, M.
author_facet Shahryari, M.
publishDate 2013
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description This article is devoted to the number of non-negative solutions of the linear Diophantine equation a₁t₁ + a₂t₂ + ⋯ + antn = d, where a₁,…,an, and d are positive integers. We obtain a relation between the number of solutions of this equation and characters of the symmetric group, using relative symmetric polynomials. As an application, we give a necessary and sufficient condition for the space of the relative symmetric polynomials to be non-zero.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/152353
citation_txt Relative symmetric polynomials and money change problem / M. Shahryari // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 2. — С. 287–292. — Бібліогр.: 3 назв. — англ.
work_keys_str_mv AT shahryarim relativesymmetricpolynomialsandmoneychangeproblem
first_indexed 2025-12-07T15:16:37Z
last_indexed 2025-12-07T15:16:37Z
_version_ 1850863096144330752