Relative symmetric polynomials and money change problem
This article is devoted to the number of non-negative solutions of the linear Diophantine equation a₁t₁ + a₂t₂ + ⋯ + antn = d, where a₁,…,an, and d are positive integers. We obtain a relation between the number of solutions of this equation and characters of the symmetric group, using relative symme...
Saved in:
| Published in: | Algebra and Discrete Mathematics |
|---|---|
| Date: | 2013 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2013
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/152353 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Relative symmetric polynomials and money change problem / M. Shahryari // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 2. — С. 287–292. — Бібліогр.: 3 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-152353 |
|---|---|
| record_format |
dspace |
| spelling |
Shahryari, M. 2019-06-10T11:10:02Z 2019-06-10T11:10:02Z 2013 Relative symmetric polynomials and money change problem / M. Shahryari // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 2. — С. 287–292. — Бібліогр.: 3 назв. — англ. 1726-3255 2010 MSC:Primary 05A17, Secondary 05E05 and 15A69. https://nasplib.isofts.kiev.ua/handle/123456789/152353 This article is devoted to the number of non-negative solutions of the linear Diophantine equation a₁t₁ + a₂t₂ + ⋯ + antn = d, where a₁,…,an, and d are positive integers. We obtain a relation between the number of solutions of this equation and characters of the symmetric group, using relative symmetric polynomials. As an application, we give a necessary and sufficient condition for the space of the relative symmetric polynomials to be non-zero. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics Relative symmetric polynomials and money change problem Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Relative symmetric polynomials and money change problem |
| spellingShingle |
Relative symmetric polynomials and money change problem Shahryari, M. |
| title_short |
Relative symmetric polynomials and money change problem |
| title_full |
Relative symmetric polynomials and money change problem |
| title_fullStr |
Relative symmetric polynomials and money change problem |
| title_full_unstemmed |
Relative symmetric polynomials and money change problem |
| title_sort |
relative symmetric polynomials and money change problem |
| author |
Shahryari, M. |
| author_facet |
Shahryari, M. |
| publishDate |
2013 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
This article is devoted to the number of non-negative solutions of the linear Diophantine equation a₁t₁ + a₂t₂ + ⋯ + antn = d, where a₁,…,an, and d are positive integers. We obtain a relation between the number of solutions of this equation and characters of the symmetric group, using relative symmetric polynomials. As an application, we give a necessary and sufficient condition for the space of the relative symmetric polynomials to be non-zero.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/152353 |
| citation_txt |
Relative symmetric polynomials and money change problem / M. Shahryari // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 2. — С. 287–292. — Бібліогр.: 3 назв. — англ. |
| work_keys_str_mv |
AT shahryarim relativesymmetricpolynomialsandmoneychangeproblem |
| first_indexed |
2025-12-07T15:16:37Z |
| last_indexed |
2025-12-07T15:16:37Z |
| _version_ |
1850863096144330752 |