Chromatic number of graphs with special distance sets, I

Given a subset D of positive integers, an integer distance graph is a graph G(Z, D) with the set Z of integers as vertex set and with an edge joining two vertices u and v if and only if |u−v| ∈ D. In this paper we consider the problem of determining the chromatic number of certain integer distance g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2014
1. Verfasser: Yegnanarayanan, V.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2014
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/152354
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Chromatic number of graphs with special distance sets, I / V. Yegnanarayanan // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 1. — С. 135–160. — Бібліогр.: 59 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-152354
record_format dspace
spelling Yegnanarayanan, V.
2019-06-10T11:10:25Z
2019-06-10T11:10:25Z
2014
Chromatic number of graphs with special distance sets, I / V. Yegnanarayanan // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 1. — С. 135–160. — Бібліогр.: 59 назв. — англ.
1726-3255
2010 MSC:05C15.
https://nasplib.isofts.kiev.ua/handle/123456789/152354
Given a subset D of positive integers, an integer distance graph is a graph G(Z, D) with the set Z of integers as vertex set and with an edge joining two vertices u and v if and only if |u−v| ∈ D. In this paper we consider the problem of determining the chromatic number of certain integer distance graphs G(Z, D)whose distance set D is either 1) a set of (n + 1) positive integers for which the nth power of the last is the sum of the nth powers of the previous terms, or 2) a set of pythagorean quadruples, or 3) a set of pythagorean n-tuples, or 4) a set of square distances, or 5) a set of abundant numbers or deficient numbers or carmichael numbers, or 6) a set of polytopic numbers, or 7) a set of happy numbers or lucky numbers, or 8) a set of Lucas numbers, or 9) a set of Ulam numbers, or 10) a set of weird numbers. Besides finding the chromatic number of a few specific distance graphs we also give useful upper and lower bounds for general cases. Further, we raise some open problems.
This research is carried out with the financial grant and support of National Board for Higher Mathematics, Government of India under the grant sanction no. 2/48(10)/2005/R&D-II/11192/dated 26,Nov,2010. The author also thanks A. Parthiban his Ph.D. student for useful discussions.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Chromatic number of graphs with special distance sets, I
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Chromatic number of graphs with special distance sets, I
spellingShingle Chromatic number of graphs with special distance sets, I
Yegnanarayanan, V.
title_short Chromatic number of graphs with special distance sets, I
title_full Chromatic number of graphs with special distance sets, I
title_fullStr Chromatic number of graphs with special distance sets, I
title_full_unstemmed Chromatic number of graphs with special distance sets, I
title_sort chromatic number of graphs with special distance sets, i
author Yegnanarayanan, V.
author_facet Yegnanarayanan, V.
publishDate 2014
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description Given a subset D of positive integers, an integer distance graph is a graph G(Z, D) with the set Z of integers as vertex set and with an edge joining two vertices u and v if and only if |u−v| ∈ D. In this paper we consider the problem of determining the chromatic number of certain integer distance graphs G(Z, D)whose distance set D is either 1) a set of (n + 1) positive integers for which the nth power of the last is the sum of the nth powers of the previous terms, or 2) a set of pythagorean quadruples, or 3) a set of pythagorean n-tuples, or 4) a set of square distances, or 5) a set of abundant numbers or deficient numbers or carmichael numbers, or 6) a set of polytopic numbers, or 7) a set of happy numbers or lucky numbers, or 8) a set of Lucas numbers, or 9) a set of Ulam numbers, or 10) a set of weird numbers. Besides finding the chromatic number of a few specific distance graphs we also give useful upper and lower bounds for general cases. Further, we raise some open problems.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/152354
fulltext
citation_txt Chromatic number of graphs with special distance sets, I / V. Yegnanarayanan // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 1. — С. 135–160. — Бібліогр.: 59 назв. — англ.
work_keys_str_mv AT yegnanarayananv chromaticnumberofgraphswithspecialdistancesetsi
first_indexed 2025-11-24T11:38:36Z
last_indexed 2025-11-24T11:38:36Z
_version_ 1850845281329872896