Rigid, quasi-rigid and matrix rings with (σ,0)-multiplication
Let R be a ring with an endomorphism σ. We introduce (σ, 0)-multiplication which is a generalization of the simple 0- multiplication. It is proved that for arbitrary positive integers m ≤ n and n ≥ 2, R[x; σ] is a reduced ring if and only if Sn,m(R) is a ring with (σ, 0)-multiplication.
Gespeichert in:
| Veröffentlicht in: | Algebra and Discrete Mathematics |
|---|---|
| Datum: | 2014 |
| Hauptverfasser: | , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2014
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/152357 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Rigid, quasi-rigid and matrix rings with (σ,0)-multiplication / C. Abdioglu, S. Şahinkay, A. KÖR // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 1. — С. 1–11. — Бібліогр.: 8 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-152357 |
|---|---|
| record_format |
dspace |
| spelling |
Abdioglu, C. Şahinkaya, S. KÖR, A. 2019-06-10T11:13:23Z 2019-06-10T11:13:23Z 2014 Rigid, quasi-rigid and matrix rings with (σ,0)-multiplication / C. Abdioglu, S. Şahinkay, A. KÖR // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 1. — С. 1–11. — Бібліогр.: 8 назв. — англ. 1726-3255 2000 MSC:16N60,16S36,16W60. https://nasplib.isofts.kiev.ua/handle/123456789/152357 Let R be a ring with an endomorphism σ. We introduce (σ, 0)-multiplication which is a generalization of the simple 0- multiplication. It is proved that for arbitrary positive integers m ≤ n and n ≥ 2, R[x; σ] is a reduced ring if and only if Sn,m(R) is a ring with (σ, 0)-multiplication. We would like to express our gratefulness to the referee for his/her valuable suggestions and contributions. Special thanks to Tamer Koşan (from GIT). en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics Rigid, quasi-rigid and matrix rings with (σ,0)-multiplication Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Rigid, quasi-rigid and matrix rings with (σ,0)-multiplication |
| spellingShingle |
Rigid, quasi-rigid and matrix rings with (σ,0)-multiplication Abdioglu, C. Şahinkaya, S. KÖR, A. |
| title_short |
Rigid, quasi-rigid and matrix rings with (σ,0)-multiplication |
| title_full |
Rigid, quasi-rigid and matrix rings with (σ,0)-multiplication |
| title_fullStr |
Rigid, quasi-rigid and matrix rings with (σ,0)-multiplication |
| title_full_unstemmed |
Rigid, quasi-rigid and matrix rings with (σ,0)-multiplication |
| title_sort |
rigid, quasi-rigid and matrix rings with (σ,0)-multiplication |
| author |
Abdioglu, C. Şahinkaya, S. KÖR, A. |
| author_facet |
Abdioglu, C. Şahinkaya, S. KÖR, A. |
| publishDate |
2014 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
Let R be a ring with an endomorphism σ. We introduce (σ, 0)-multiplication which is a generalization of the simple 0- multiplication. It is proved that for arbitrary positive integers m ≤ n and n ≥ 2, R[x; σ] is a reduced ring if and only if Sn,m(R) is a ring with (σ, 0)-multiplication.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/152357 |
| citation_txt |
Rigid, quasi-rigid and matrix rings with (σ,0)-multiplication / C. Abdioglu, S. Şahinkay, A. KÖR // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 1. — С. 1–11. — Бібліогр.: 8 назв. — англ. |
| work_keys_str_mv |
AT abdiogluc rigidquasirigidandmatrixringswithσ0multiplication AT sahinkayas rigidquasirigidandmatrixringswithσ0multiplication AT kora rigidquasirigidandmatrixringswithσ0multiplication |
| first_indexed |
2025-12-07T16:20:46Z |
| last_indexed |
2025-12-07T16:20:46Z |
| _version_ |
1850867131656175616 |