Multi-solid varieties and Mh-transducers

We consider the concepts of colored terms and multi-hypersubstitutions. If t∈Wτ(X) is a term of type τ, then any mapping αt:PosF(t)→N of the non-variable positions of a term into the set of natural numbers is called a coloration of t. The set Wcτ(X) of colored terms consists of all pairs ⟨t,αt⟩....

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Algebra and Discrete Mathematics
Дата:2007
Автор: Shtrakov, S.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2007
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/152366
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Multi-solid varieties and Mh-transducers / S. Shtrakov // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 3. — С. 113–131. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-152366
record_format dspace
spelling Shtrakov, S.
2019-06-10T14:42:55Z
2019-06-10T14:42:55Z
2007
Multi-solid varieties and Mh-transducers / S. Shtrakov // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 3. — С. 113–131. — Бібліогр.: 10 назв. — англ.
1726-3255
2000 Mathematics Subject Classification:08B15, 03C05, 08A70.
https://nasplib.isofts.kiev.ua/handle/123456789/152366
We consider the concepts of colored terms and multi-hypersubstitutions. If t∈Wτ(X) is a term of type τ, then any mapping αt:PosF(t)→N of the non-variable positions of a term into the set of natural numbers is called a coloration of t. The set Wcτ(X) of colored terms consists of all pairs ⟨t,αt⟩. Hypersubstitutions are maps which assign to each operation symbol a term with the same arity. If M is a monoid of hypersubstitutions then any sequence ρ=(σ1,σ2,…) is a mapping ρ:N→M, called a multi-hypersubstitution over M. An identity t≈s, satisfied in a variety V is an M-multi-hyperidentity if its images ρ[t≈s] are also satisfied in V for all ρ∈M. A variety V is M-multi-solid, if all its identities are M−multi-hyperidentities. We prove a series of inclusions and equations concerning M-multi-solid varieties. Finally we give an automata realization of multi-hypersubstitutions and colored terms.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Multi-solid varieties and Mh-transducers
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Multi-solid varieties and Mh-transducers
spellingShingle Multi-solid varieties and Mh-transducers
Shtrakov, S.
title_short Multi-solid varieties and Mh-transducers
title_full Multi-solid varieties and Mh-transducers
title_fullStr Multi-solid varieties and Mh-transducers
title_full_unstemmed Multi-solid varieties and Mh-transducers
title_sort multi-solid varieties and mh-transducers
author Shtrakov, S.
author_facet Shtrakov, S.
publishDate 2007
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description We consider the concepts of colored terms and multi-hypersubstitutions. If t∈Wτ(X) is a term of type τ, then any mapping αt:PosF(t)→N of the non-variable positions of a term into the set of natural numbers is called a coloration of t. The set Wcτ(X) of colored terms consists of all pairs ⟨t,αt⟩. Hypersubstitutions are maps which assign to each operation symbol a term with the same arity. If M is a monoid of hypersubstitutions then any sequence ρ=(σ1,σ2,…) is a mapping ρ:N→M, called a multi-hypersubstitution over M. An identity t≈s, satisfied in a variety V is an M-multi-hyperidentity if its images ρ[t≈s] are also satisfied in V for all ρ∈M. A variety V is M-multi-solid, if all its identities are M−multi-hyperidentities. We prove a series of inclusions and equations concerning M-multi-solid varieties. Finally we give an automata realization of multi-hypersubstitutions and colored terms.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/152366
citation_txt Multi-solid varieties and Mh-transducers / S. Shtrakov // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 3. — С. 113–131. — Бібліогр.: 10 назв. — англ.
work_keys_str_mv AT shtrakovs multisolidvarietiesandmhtransducers
first_indexed 2025-12-07T15:18:42Z
last_indexed 2025-12-07T15:18:42Z
_version_ 1850863226968866816