Multi-solid varieties and Mh-transducers
We consider the concepts of colored terms and multi-hypersubstitutions. If t∈Wτ(X) is a term of type τ, then any mapping αt:PosF(t)→N of the non-variable positions of a term into the set of natural numbers is called a coloration of t. The set Wcτ(X) of colored terms consists of all pairs ⟨t,αt⟩....
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2007 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2007
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/152366 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Multi-solid varieties and Mh-transducers / S. Shtrakov // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 3. — С. 113–131. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-152366 |
|---|---|
| record_format |
dspace |
| spelling |
Shtrakov, S. 2019-06-10T14:42:55Z 2019-06-10T14:42:55Z 2007 Multi-solid varieties and Mh-transducers / S. Shtrakov // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 3. — С. 113–131. — Бібліогр.: 10 назв. — англ. 1726-3255 2000 Mathematics Subject Classification:08B15, 03C05, 08A70. https://nasplib.isofts.kiev.ua/handle/123456789/152366 We consider the concepts of colored terms and multi-hypersubstitutions. If t∈Wτ(X) is a term of type τ, then any mapping αt:PosF(t)→N of the non-variable positions of a term into the set of natural numbers is called a coloration of t. The set Wcτ(X) of colored terms consists of all pairs ⟨t,αt⟩. Hypersubstitutions are maps which assign to each operation symbol a term with the same arity. If M is a monoid of hypersubstitutions then any sequence ρ=(σ1,σ2,…) is a mapping ρ:N→M, called a multi-hypersubstitution over M. An identity t≈s, satisfied in a variety V is an M-multi-hyperidentity if its images ρ[t≈s] are also satisfied in V for all ρ∈M. A variety V is M-multi-solid, if all its identities are M−multi-hyperidentities. We prove a series of inclusions and equations concerning M-multi-solid varieties. Finally we give an automata realization of multi-hypersubstitutions and colored terms. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics Multi-solid varieties and Mh-transducers Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Multi-solid varieties and Mh-transducers |
| spellingShingle |
Multi-solid varieties and Mh-transducers Shtrakov, S. |
| title_short |
Multi-solid varieties and Mh-transducers |
| title_full |
Multi-solid varieties and Mh-transducers |
| title_fullStr |
Multi-solid varieties and Mh-transducers |
| title_full_unstemmed |
Multi-solid varieties and Mh-transducers |
| title_sort |
multi-solid varieties and mh-transducers |
| author |
Shtrakov, S. |
| author_facet |
Shtrakov, S. |
| publishDate |
2007 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
We consider the concepts of colored terms and multi-hypersubstitutions. If t∈Wτ(X) is a term of type τ, then any mapping αt:PosF(t)→N of the non-variable positions of a term into the set of natural numbers is called a coloration of t. The set Wcτ(X) of colored terms consists of all pairs ⟨t,αt⟩. Hypersubstitutions are maps which assign to each operation symbol a term with the same arity. If M is a monoid of hypersubstitutions then any sequence ρ=(σ1,σ2,…) is a mapping ρ:N→M, called a multi-hypersubstitution over M. An identity t≈s, satisfied in a variety V is an M-multi-hyperidentity if its images ρ[t≈s] are also satisfied in V for all ρ∈M. A variety V is M-multi-solid, if all its identities are M−multi-hyperidentities. We prove a series of inclusions and equations concerning M-multi-solid varieties. Finally we give an automata realization of multi-hypersubstitutions and colored terms.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/152366 |
| citation_txt |
Multi-solid varieties and Mh-transducers / S. Shtrakov // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 3. — С. 113–131. — Бібліогр.: 10 назв. — англ. |
| work_keys_str_mv |
AT shtrakovs multisolidvarietiesandmhtransducers |
| first_indexed |
2025-12-07T15:18:42Z |
| last_indexed |
2025-12-07T15:18:42Z |
| _version_ |
1850863226968866816 |