Exponent matrices and topological equivalence of maps

Conjugate classes of continuous maps of the interval [0,1] into itself, whose iterations form a finite group are described. For each of possible groups of iterations one to one correspondence between conjugate classes of maps and equivalent classes of (0,1)-exponent matrices of special form is const...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2007
Hauptverfasser: Fedorenko, V., Kirichenko, V., Plakhotnyk, M.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2007
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/152381
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Exponent matrices and topological equivalence of maps / V. Fedorenko, V. Kirichenko, M. Plakhotnyk // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 4. — С. 45–58. — Бібліогр.: 5 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-152381
record_format dspace
spelling Fedorenko, V.
Kirichenko, V.
Plakhotnyk, M.
2019-06-10T17:16:31Z
2019-06-10T17:16:31Z
2007
Exponent matrices and topological equivalence of maps / V. Fedorenko, V. Kirichenko, M. Plakhotnyk // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 4. — С. 45–58. — Бібліогр.: 5 назв. — англ.
1726-3255
2000 Mathematics Subject Classification:05С50, 37C15, 37C25.
https://nasplib.isofts.kiev.ua/handle/123456789/152381
Conjugate classes of continuous maps of the interval [0,1] into itself, whose iterations form a finite group are described. For each of possible groups of iterations one to one correspondence between conjugate classes of maps and equivalent classes of (0,1)-exponent matrices of special form is constructed. Easy way of finding the quiver of the map in terms of the set of its extrema is found.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Exponent matrices and topological equivalence of maps
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Exponent matrices and topological equivalence of maps
spellingShingle Exponent matrices and topological equivalence of maps
Fedorenko, V.
Kirichenko, V.
Plakhotnyk, M.
title_short Exponent matrices and topological equivalence of maps
title_full Exponent matrices and topological equivalence of maps
title_fullStr Exponent matrices and topological equivalence of maps
title_full_unstemmed Exponent matrices and topological equivalence of maps
title_sort exponent matrices and topological equivalence of maps
author Fedorenko, V.
Kirichenko, V.
Plakhotnyk, M.
author_facet Fedorenko, V.
Kirichenko, V.
Plakhotnyk, M.
publishDate 2007
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description Conjugate classes of continuous maps of the interval [0,1] into itself, whose iterations form a finite group are described. For each of possible groups of iterations one to one correspondence between conjugate classes of maps and equivalent classes of (0,1)-exponent matrices of special form is constructed. Easy way of finding the quiver of the map in terms of the set of its extrema is found.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/152381
citation_txt Exponent matrices and topological equivalence of maps / V. Fedorenko, V. Kirichenko, M. Plakhotnyk // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 4. — С. 45–58. — Бібліогр.: 5 назв. — англ.
work_keys_str_mv AT fedorenkov exponentmatricesandtopologicalequivalenceofmaps
AT kirichenkov exponentmatricesandtopologicalequivalenceofmaps
AT plakhotnykm exponentmatricesandtopologicalequivalenceofmaps
first_indexed 2025-12-07T17:02:19Z
last_indexed 2025-12-07T17:02:19Z
_version_ 1850869745870438400