Serial piecewise domains

A ring A is called a piecewise domain with respect to the complete set of idempotents {e1,e2,…,em} if every nonzero homomorphism eiA→ejA is a monomorphism. In this paper we study the rings for which conditions of being piecewise domain and being hereditary (or semihereditary) rings are equivale...

Full description

Saved in:
Bibliographic Details
Published in:Algebra and Discrete Mathematics
Date:2007
Main Authors: Gubareni, N., Khibina, M.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2007
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/152382
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Serial piecewise domains / N. Gubareni, M. Khibina // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 4. — С. 59–72. — Бібліогр.: 25 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-152382
record_format dspace
spelling Gubareni, N.
Khibina, M.
2019-06-10T17:17:15Z
2019-06-10T17:17:15Z
2007
Serial piecewise domains / N. Gubareni, M. Khibina // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 4. — С. 59–72. — Бібліогр.: 25 назв. — англ.
1726-3255
2000 Mathematics Subject Classification:16P40, 16G10
https://nasplib.isofts.kiev.ua/handle/123456789/152382
A ring A is called a piecewise domain with respect to the complete set of idempotents {e1,e2,…,em} if every nonzero homomorphism eiA→ejA is a monomorphism. In this paper we study the rings for which conditions of being piecewise domain and being hereditary (or semihereditary) rings are equivalent. We prove that a serial right Noetherian ring is a piecewise domain if and only if it is right hereditary. And we prove that a serial ring with right Noetherian diagonal is a piecewise domain if and only if it is semihereditary.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Serial piecewise domains
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Serial piecewise domains
spellingShingle Serial piecewise domains
Gubareni, N.
Khibina, M.
title_short Serial piecewise domains
title_full Serial piecewise domains
title_fullStr Serial piecewise domains
title_full_unstemmed Serial piecewise domains
title_sort serial piecewise domains
author Gubareni, N.
Khibina, M.
author_facet Gubareni, N.
Khibina, M.
publishDate 2007
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description A ring A is called a piecewise domain with respect to the complete set of idempotents {e1,e2,…,em} if every nonzero homomorphism eiA→ejA is a monomorphism. In this paper we study the rings for which conditions of being piecewise domain and being hereditary (or semihereditary) rings are equivalent. We prove that a serial right Noetherian ring is a piecewise domain if and only if it is right hereditary. And we prove that a serial ring with right Noetherian diagonal is a piecewise domain if and only if it is semihereditary.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/152382
citation_txt Serial piecewise domains / N. Gubareni, M. Khibina // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 4. — С. 59–72. — Бібліогр.: 25 назв. — англ.
work_keys_str_mv AT gubarenin serialpiecewisedomains
AT khibinam serialpiecewisedomains
first_indexed 2025-12-07T18:39:47Z
last_indexed 2025-12-07T18:39:47Z
_version_ 1850875877316886528