Planar trees, free nonassociative algebras, invariants, and elliptic integrals

We consider absolutely free algebras with (maybe infinitely) many multilinear operations. Such multioperator algebras were introduced by Kurosh in 1960. Multioperator algebras satisfy the Nielsen-Schreier property and subalgebras of free algebras are also free. Free multioperator algebras are descri...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Algebra and Discrete Mathematics
Дата:2008
Автори: Drensky, V., Holtkamp, R.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2008
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/152390
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Planar trees, free nonassociative algebras, invariants, and elliptic integrals / V. Drensky, R. Holtkamp // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 2. — С. 1–41. — Бібліогр.: 48 назв. — англ

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-152390
record_format dspace
spelling Drensky, V.
Holtkamp, R.
2019-06-10T18:55:59Z
2019-06-10T18:55:59Z
2008
Planar trees, free nonassociative algebras, invariants, and elliptic integrals / V. Drensky, R. Holtkamp // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 2. — С. 1–41. — Бібліогр.: 48 назв. — англ
1726-3255
2000 Mathematics Subject Classification:17A50, 17A36, 17A42, 15A72,33E05.
https://nasplib.isofts.kiev.ua/handle/123456789/152390
We consider absolutely free algebras with (maybe infinitely) many multilinear operations. Such multioperator algebras were introduced by Kurosh in 1960. Multioperator algebras satisfy the Nielsen-Schreier property and subalgebras of free algebras are also free. Free multioperator algebras are described in terms of labeled reduced planar rooted trees. This allows to apply combinatorial techniques to study their Hilbert series and the asymptotics of their coefficients. Then, over a field of characteristic 0, we investigate the subalgebras of invariants under the action of a linear group, their sets of free generators and their Hilbert series. It has turned out that, except in the trivial cases, the algebra of elliptic integrals. invariants is never finitely generated. In important partial cases the Hilbert series of the algebras of invariants and the generating functions of their sets of free generators are expressed in terms of elliptic integrals.
The work of the first author was partially supported by Grant MI-1503/2005 ofthe Bulgarian National Science Fund.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Planar trees, free nonassociative algebras, invariants, and elliptic integrals
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Planar trees, free nonassociative algebras, invariants, and elliptic integrals
spellingShingle Planar trees, free nonassociative algebras, invariants, and elliptic integrals
Drensky, V.
Holtkamp, R.
title_short Planar trees, free nonassociative algebras, invariants, and elliptic integrals
title_full Planar trees, free nonassociative algebras, invariants, and elliptic integrals
title_fullStr Planar trees, free nonassociative algebras, invariants, and elliptic integrals
title_full_unstemmed Planar trees, free nonassociative algebras, invariants, and elliptic integrals
title_sort planar trees, free nonassociative algebras, invariants, and elliptic integrals
author Drensky, V.
Holtkamp, R.
author_facet Drensky, V.
Holtkamp, R.
publishDate 2008
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description We consider absolutely free algebras with (maybe infinitely) many multilinear operations. Such multioperator algebras were introduced by Kurosh in 1960. Multioperator algebras satisfy the Nielsen-Schreier property and subalgebras of free algebras are also free. Free multioperator algebras are described in terms of labeled reduced planar rooted trees. This allows to apply combinatorial techniques to study their Hilbert series and the asymptotics of their coefficients. Then, over a field of characteristic 0, we investigate the subalgebras of invariants under the action of a linear group, their sets of free generators and their Hilbert series. It has turned out that, except in the trivial cases, the algebra of elliptic integrals. invariants is never finitely generated. In important partial cases the Hilbert series of the algebras of invariants and the generating functions of their sets of free generators are expressed in terms of elliptic integrals.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/152390
citation_txt Planar trees, free nonassociative algebras, invariants, and elliptic integrals / V. Drensky, R. Holtkamp // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 2. — С. 1–41. — Бібліогр.: 48 назв. — англ
work_keys_str_mv AT drenskyv planartreesfreenonassociativealgebrasinvariantsandellipticintegrals
AT holtkampr planartreesfreenonassociativealgebrasinvariantsandellipticintegrals
first_indexed 2025-12-07T15:11:52Z
last_indexed 2025-12-07T15:11:52Z
_version_ 1850862797281296384