Characterization of Chebyshev Numbers

Let Tn(x) be the degree-n Chebyshev polynomial of the first kind. It is known [1,13] that Tp(x)≡xpmodp, when p is an odd prime, and therefore, Tp(a)≡amodp for all a. Our main result is the characterization of composite numbers n satisfying the condition Tn(a)≡amodn, for any integer a. We call these...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2008
Hauptverfasser: Jacobs, D.P., Trevisan, V., Rayers, M.O.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2008
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/152391
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Characterization of Chebyshev Numbers / D.P. Jacobs, V. Trevisan, M.O. Rayers // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 2. — С. 65–82. — Бібліогр.: 17 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Let Tn(x) be the degree-n Chebyshev polynomial of the first kind. It is known [1,13] that Tp(x)≡xpmodp, when p is an odd prime, and therefore, Tp(a)≡amodp for all a. Our main result is the characterization of composite numbers n satisfying the condition Tn(a)≡amodn, for any integer a. We call these pseudoprimes Chebyshev numbers, and show that n is a Chebyshev number if and only if n is odd, squarefree, and for each of its prime divisors p, n≡±1modp−1 and n≡±1modp+1. Like Carmichael numbers, they must be the product of at least three primes. Our computations show there is one Chebyshev number less than 10¹⁰, although it is reasonable to expect there are infinitely many. Our proofs are based on factorization and resultant properties of Chebyshev polynomials.
ISSN:1726-3255