Methemoglobin binding to model phospholipid membranes

The interaction of methemoglobin with model phospholipid membranes composed of phosphatidylcholine and its mixtures with phosphatidylserine or diphosphatidylglycerol has been studied. The binding isotherms have been analyzed in terms of two-dimensional lattice models of surface adsorption and incorp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2000
1. Verfasser: Gorbenko, G.P.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут молекулярної біології і генетики НАН України 2000
Schriftenreihe:Биополимеры и клетка
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/152397
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Methemoglobin binding to model phospholipid membranes / G.P. Gorbenko // Биополимеры и клетка. — 2000. — Т. 16, № 1. — С. 16-21. — Бібліогр.: 23 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-152397
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1523972025-02-09T21:50:10Z Methemoglobin binding to model phospholipid membranes Зв'язування метгемоглобіну з модельними фосфоліпідними мембранами Связывание метгемоглобина с модельными фосфолипидными мембранами Gorbenko, G.P. Структура и функции биополимеров The interaction of methemoglobin with model phospholipid membranes composed of phosphatidylcholine and its mixtures with phosphatidylserine or diphosphatidylglycerol has been studied. The binding isotherms have been analyzed in terms of two-dimensional lattice models of surface adsorption and incorporation of the protein into the lipid bilayer. The binding parameters including an association constant, binding stoichiometry, enthalpy and entropy contributions to free energy change have been estimated. Исследовали взаимодействие метгемоглобина с модельными фосфолипидными мембранами, состоящими из фосфатидилхолина и его смесей с фосфатидилсерином и дифосфатидилглицерином. Изотермы связывания проанализированы в рамках двухмерных решеточных моделей адсорбции на поверхности и встраивания белка в липидный бислой. Проведена оценка кон­станты ассоциации, стехиометрии связывания, вкладов энтальтиного и энтропийного факторов в изменение свободной энергии при образовании белок-липидных комплексов. Досліджували взаємодію метгемоглобіну з модельними фос­фоліпідними мембранами, сформованими з фосфатидилхоліну та його сумішей з фосфатидилсерином і діфосфатидилгліцерином. Ізотерми зв'язування проаналізовано в рамках дво­вимірних моделей адсорбції на поверхні та проникнення білка в ліпідний бішар. Здійснено оцінку константи асоціації, стехіо­метрії зв'язування, внесків ентальпійного та ентропійного факторів у змінення вільної енергії при утворенні білок-ліпідних комплексів. 2000 Article Methemoglobin binding to model phospholipid membranes / G.P. Gorbenko // Биополимеры и клетка. — 2000. — Т. 16, № 1. — С. 16-21. — Бібліогр.: 23 назв. — англ. 0233-7657 DOI:http://dx.doi.org/10.7124/bc.000551 https://nasplib.isofts.kiev.ua/handle/123456789/152397 577.37 en Биополимеры и клетка application/pdf Інститут молекулярної біології і генетики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Структура и функции биополимеров
Структура и функции биополимеров
spellingShingle Структура и функции биополимеров
Структура и функции биополимеров
Gorbenko, G.P.
Methemoglobin binding to model phospholipid membranes
Биополимеры и клетка
description The interaction of methemoglobin with model phospholipid membranes composed of phosphatidylcholine and its mixtures with phosphatidylserine or diphosphatidylglycerol has been studied. The binding isotherms have been analyzed in terms of two-dimensional lattice models of surface adsorption and incorporation of the protein into the lipid bilayer. The binding parameters including an association constant, binding stoichiometry, enthalpy and entropy contributions to free energy change have been estimated.
format Article
author Gorbenko, G.P.
author_facet Gorbenko, G.P.
author_sort Gorbenko, G.P.
title Methemoglobin binding to model phospholipid membranes
title_short Methemoglobin binding to model phospholipid membranes
title_full Methemoglobin binding to model phospholipid membranes
title_fullStr Methemoglobin binding to model phospholipid membranes
title_full_unstemmed Methemoglobin binding to model phospholipid membranes
title_sort methemoglobin binding to model phospholipid membranes
publisher Інститут молекулярної біології і генетики НАН України
publishDate 2000
topic_facet Структура и функции биополимеров
url https://nasplib.isofts.kiev.ua/handle/123456789/152397
citation_txt Methemoglobin binding to model phospholipid membranes / G.P. Gorbenko // Биополимеры и клетка. — 2000. — Т. 16, № 1. — С. 16-21. — Бібліогр.: 23 назв. — англ.
series Биополимеры и клетка
work_keys_str_mv AT gorbenkogp methemoglobinbindingtomodelphospholipidmembranes
AT gorbenkogp zvâzuvannâmetgemoglobínuzmodelʹnimifosfolípídnimimembranami
AT gorbenkogp svâzyvaniemetgemoglobinasmodelʹnymifosfolipidnymimembranami
first_indexed 2025-12-01T04:11:55Z
last_indexed 2025-12-01T04:11:55Z
_version_ 1850277696784826368
fulltext ISSN 0233-7657. Биополимеры и клетка. 2000. Т. 16. № 2 С Т Р У К Т У Р А И Ф У Н К Ц И И Б И О П О Л И М Е Р О В Methemoglobin binding to model phospholipid membranes G. P- Gorbenko Kharkov State University 4 Svobody Sq., Kharkiv, 61077, Ukraine The interaction of methemoglobin with model phospholipid membranes composed of phosphatidylcholine and its mixtures with phosphatidylserine or diphosphatidylglycerol has been studied. The binding isotherms have been analyzed in terms of two-dimensional lattice models of surface adsorption and incorporation of the protein into the lipid bilayer. The binding parameters including an association constant, binding stoichiometry, enthalpy and entropy contributions to free energy change have been estimated. Introduction. Model protein-lipid systems are pre­ sently widely used to gain insight into the na ture of interactions between two major membrane consti­ t u e n t s — proteins and lipids [1 , 2 ] . Protein compo­ nent of these systems is often represented by non- membraneous water soluble proteins, being capable of forming complexes with lipids [3 , 4 ] . One of the proteins employed in such model studies is hemo­ globin [5 ] . Numerous data available in the l i terature a re indicative of the possibility of hemoglobin binding to lipid bilayer by means of electrostatic and hydro ­ phobic interactions [5—7 J. To date , hemoglobin s t ru­ cture is well characterized, thus providing a basis for elucidation of general principles and driving forces of protein-lipid interactions. One important aspect of the problem envisaged concerns the factors governing the thermodynamics of the protein association with a lipid bilayer. T h e main goal of the present work was to examine thermodynamic characteristics of methemo­ globin (metHb) complexes with phospholipids. Analy­ sis of the binding isotherms in terms of two-dimen­ sional lattice models of large ligand adsorption to membranes allowed to est imate association constant , stoichiometry of binding, enthalpy and entropy cont­ ributions to the free energy change. As a lipid component of the model systems studied liposomes composed of phosphatidylcholine (PC) and its mixtu- © G. P. GORBENKO, 2000 res vrith phosphatidylserine (PS) and diphospha­ tidylglycerol (DPG) were employed. Materials and Methods . Egg yolk PC, beef heart D P G and beef brain PS were purchased from Bak- preparat (Kharkiv, Ukra ine) . Oxyhemoglobin was isolated from human blood according to [8] and converted to m e t H b by add ing of potassium ferri- cyanide with subsequent gel-filtration on molselect G-25. Liposomes from PC and its mixtures with PS (3:1, mohmol) and D P G (6:1 , mohmol) were obtained as follows. Ethanol lipid's solution was evaporated under vacuo and lipid film was then suspended in 10 mM Tr is -HCl buffer, pH 7.4, to a final lipid concen­ tration of 10 m g / m l . l i p id suspension was shaked for 10 min, sonicated for 3 min, 4 °С and centrifuged at 30000 g for 30 min in order to remove multilamellar vesicles. Liposomes with average diameter of ca. 100 nm, remaining in supernatant , were used in expe­ riments. Phospholipid concentration was determined according to [9 ] . Protein concentration was found using extinction coefficient E401 = 5 .66-10 5 M _ Icm~ [101. Results and Discussion. In analyzing the protein (P) association with lipids (L) one of the following approaches is commonly used. Within the framework of traditional approach lipid bilayer is treated as consisting of discrete protein 's binding sites, each containing n lipid molecules. In this case binding curves; a re described by Langmuir isotherm, being applied to a simple chemical equilibrium: P + nL ** о P - « L . However, as indicated in a number of 16 METHEMOGLOBIN BINDING TO MODEL PHOSPHOLIPID MEMBRANES studies [11—14] , this approach appears to be inade­ quate in examining protein-lipid interactions for the following reasons. First of all, the protein must be considered as large ligand, interacting with an ar ray of binding contacts on a membrane surface and covering simultaneously n lipid molecules. Additio­ nally, adsorption of large ligand on the surface can lead to the steric constraints depending on the spatial arrangement of the lipids in the protein-lipid contact region. Such peculiarities of the protein interaction with lipid bilayer have been taken into account in a series of models, particularly, in the models proposed by Stankowski [12, 13] . It seems also noteworthy that there exists an approach, principally differing from those mentioned above. It based on the consideration of the protein association with an assembly of lipids, ra ther than with individual molecules comprising lipid bilayer, so that protein-lipid interactions a re inter­ preted as partit ioning of the protein between aqueous and membrane phases , characterizing only by par t i ­ tion coefficient [14] . In the present paper two-dimensional lattice models of Stankowski [12, 13] have been used to analyze quantitatively me tHb binding to liposomes of various composition. Lipid bilayer was modeled as hexagonal lattice with structural subunits represented by lipid molecules. According to the formalism emp­ loyed, two limiting cases, corresponding to the l inear and discoid ligand shape , were considered. Note that the concept of «ligand shape» means geometrical ar rangement of binding contacts in the protein-lipid complex. Adsorption of l inear ligand on the mem­ brane surface was described by [13] : (1) (2) where B, F a re the concentrat ions of bound and free protein, respectively, L is the total lipid concentration, n is the number of lipid molecules per molecule of bound protein, Ka is association constant , z is the lattice coordination number (z = 6) . Assuming that ligand has a shape of disc the following relationship was used: (3) where a is the parameter of excluded area (a = 3) , со = 2v r 3n7# . Equations (1) — (3) were used to analyze experi­ mental da ta obtained for negatively charged lipo­ somes, composed of P C mixtures with PS or D P G Ж 0.10 o.oo 1.20 Fig. 1. The isotherms of methemoglobin binding to liposomes composed of phosphatidylcholine and phosphatidylserine (3:1, molrmol). Temperature, °С: / — 4; 2 — 13; 3 — 24; 4 — 31; 5 — 37. Lipid concentration 0.8 mM 0.40- ' 0.30- 5 0.20- 0.10- 0.00 0.00 1.20 Fig. 2. The isotherms of methemoglobin binding to liposomes composed of phosphatidylcholine and diphosphatidylglycerol (6:1, mol:mol). Temperature, °С: / — 4; 2 — 13; 3 — 24; 4 — 31; J — 37. Lipid concentration 0.8 mM 17 GORBENKO G. P. (Fig. 1, 2) . In this case it was assumed that the main type of protein-lipid interactions is the adsorption of the protein molecule on membrane surface due to formation of electrostatic contacts. Meanwhile, taking into account the findings provided by a number of studies [6, 7, 15] , preferential mode of me tHb interaction with neutral PC vesicles was supposed to be the protein penetrat ion into bilayer interior. T h e ­ refore the binding curves observed for PC liposomes (Fig. 3) were treated in te rms of the model of protein incorporation in the membrane [13] : (4) (5) (6) Parameter n in eqn. (4) corresponds to the number of lipid molecules occupying surface area being equivalent to cross-section of the protein part penetrating in the bilayer. T h e binding of me tHb to liposomes was exa­ mined by monitoring the decrease of protein absor- 0.30 0.00 0.40 0.80 Protein concentration, цМ 1.20 Fig. 3. The isotherms of raethemoglobin binding to liposomes composed of phosphatidylcholine Temperature, °С: 1 — 4; 2 — 13; 3 — 24; 4 — 31; 5 — 37. Lipid concentration 0.5 mM bance in Soret band (at wavelength 407 nm) . This absorbance change is supposed to be a consequence of metHb structural al terations caused by its interaction with lipid's hydroperoxides [16] or negatively char­ ged phospholipids [17, 18] . According to approach, developed in the previous studies [20, 21 ], it was assumed that absorbance decrease (АЛ 4 0 7 ) is pro­ portional to the concentration of the bound protein (B): (7) where a is coefficient of proportionality. T h e mea­ sured value of ( A i 4 4 0 7 ) (AAr) was corrected for the light scattering of the protein-lipid mixture using the following relationship [20] : (8) where A0 is the wavelength from the region of neglijjibly small protein absorbance (A0 = 700 nm) , A = 407 nm. Parameter m, determined by the sample turbidity, was estimated from the plots lg Л vs. lg A obtained at wavelengths 600—700 nm, according to equation: m = (9) (10) where PQ C and P0 e a re calculated and determined experimentally concentrations of the protein, m is the number of experimental points. Presented in Table 1 a re the parameters n and Ka characterizing me tHb association with liposomes of various composition. Since the ligand shape is un­ known and proves to be irregular, the lower and upper limits of n were assessed assuming linear or discoid ligand shape, respectively. Because the cross- section of me tHb molecule being ca. 2600 A, corres­ ponds; to the area of ca. 37 lipid molecules, it seems likely that real shape of contact region in the protein- 18 METHEMOGLOBIN BINDING TO MODEL PHOSPHOLIPID MEMBRANES Table 1 Parameters of methemoglobin binding to liposomes derived from the fitting of experimental data to eqns. (l)—(6) The error of parameter estimation does not exceed 17 % for Ka 20 % for n and 12 % for a lipid complexes is closer to linear. It should be emphasized that parameter n accounts for a total amount of lipid molecules that a re excluded from the further ligand binding upon the adsorption of one protein molecule. T h e actual number of protein-lipid contacts in some cases can be less than n. Such a situation may take place, for instance, when the protein binds preferentially to the charged lipid headgroups, that form clusters upon the protein association with lipid bilayer [13] . Taking into ac­ count this possibility, relatively high n values, derived for liposomes PC:PS (Table 1) can be interpreted in terms of preferential me tHb binding to negatively charged PS molecules. In this case the number of lipids in contact with the protein (n*) can be eva­ luated as nf, where / is the fraction of charged lipid (f = 0.25). T h e values of n*, obtained in such a way, would be closer to aforementioned est imates, based on the protein cross-section and the area of l ipid's headgroup. T h e value of association constant (Table 1) observed at different temperatures were further used to estimate free energy change (AG) a n d its enthalpy (AH) and entropy (AS) contr ibutions: lnK„ = R RT (11) (12) T h e fitting of In Ka plots vs. 1 /T to eqn. (12) allowed to evaluate AH and AS. As can be seen from Table 2, the formation of m e t H b complexes with liposomes is characterized by positive enthalpy and entropy changes. T h e values of AG a re consistent with those reported elsewhere for model peptides [19] and proteins [22] . According to the modern theories of protein-lipid interactions there exist at least five factors controlling the thermodynamics of the protein binding to lipid bilayer, namely i) formation of electrostatic contacts, ii) hydrophobic effect and al te­ rations in iii) the network of hydrogen bonds , iv) protein entropy and v) lipid order ing [23 ]. As follows from the theoretical predictions, changes in hydrogen 19 GORBENKO G. P. Table 2 Thermodynamic parameters of methemoglobin interaction with liposomes bonding and lipid order ing do not contribute no­ ticeably to the total AG value. However, another factors afore-mentioned may be of significance. T h e results presented here suggest that the main driving force of me tHb interaction with lipids is energetically favourable entropy increase. Th i s , in turn , can be caused by i) formation of ionic contacts in water, ii) transfer of nonpolar amino acid sidechains in the membrane interior and iii) unfolding of the protein molecule [23] . In this context it seems important to note that negatively charged lipids, including PS and DPG, can exert destabilizing influence on me tHb structure [17, 18] . Taken together, the results of the present s tudy indicate that two-dimensional lattice models allow to obtain reasonable est imates of the binding para­ meters , characterizing ei ther surface adsorption or protein incorporation in the lipid bilayer. From ther- modynamical viewpoint, entropy factor was found to play determining role in me tHb association with the model phospholipid membranes . Acknowledgements. I thank the referee for the valuable remarks . Г. П. Горбенко Зв'язування метгемоглобіну з модельними фосфоліпідними мембранами Резюме Досліджували взаємодію метгемоглобіну з модельними фос­ фоліпідними мембранами, сформованими з фосфатидилхоліну та його сумішей з фосфатидилсерином і діфосфатидилглі- церином. Ізотерми зв'язування проаналізовано в рамках дво­ вимірних моделей адсорбції на поверхні та проникнення білка в ліпідний бішар. Здійснено оцінку константи асоціації, стехіо­ метрії зв'язування, внесків ентальпійного та ентропійного факторів у змінення вільної енергії при утворенні білок- ліпідних комплексів. Г. П. Горбенко Связьгсание метгемоглобина с модельными фосфолипидными мембранами Резюме. Исследовали взаимодействие метгемоглобина с модельными фосфолипидными мембранами, состоящими из фосфатидилхо- лина и его смесей с фосфатидилсерином и дифосфатидилглице- рином. Изотермы связывания проанализированы в рамках двухмерных решеточных моделей адсорбции на поверхности и встраивания белка в липидный бислой. Проведена оценка кон­ станты ассоциации, стехиометрии связывания, вкладов эн- тальтиного и энтропийного факторов в изменение свободной энергии при образовании белок-липидных комплексов. REFERENCES 1. Klmelberg Н. К. Protein-Hposome interactions and their rele­ vance to the structure and function of cell membranes / / Мої. and Cell. Biochem.—1976.—10, N 3.—P. 171 — 190. 2. Tamm L. Membrane insertion and lateral mobility of synthetic amphiphilic signal peptides in lipid model membranes / / Biochim. etbiophys. acta.—1991.—1071.—P. 123—148. 3. Heimburg Т., Marsh D. Protein surface distribution and protein-protein interactions in the binding of peripheral pro­ teins to charged lipid membranes / / Biophys. J.—1995.— 68.—P. 5436—5546. 4. Marsh D. Stoichiometry of lipid-protein interaction and integral membrane protein structure / / Eur. Biophys. J.—1997.—26.— P 203—208. 5. Ушакова И. П., Василенко И. А., Серебренникова Г. А., Евстигнеева Р. П. Изучение взаимодействия метгемо­ глобина с фосфолипидными бислойными мембранами ме­ тодом флюоресценции / / Биоорг. химия.—1981.—7, № 4.—С. 613—620. 6. Селезнев С. А., Громов Н. Г. Образование гемоглобин- липидных комплексов как модель взаимодействия основ­ ных компонентов клеточных мембран / / Биофизика.— 1983.—28, № 3.—С. 521. 7. Горбенко Г. П., Древаль В. И. Взаимодействие метгемо­ глобина с фосфолипидными везикулами / / Биополимеры и клетка.—1990.—6, № 2.—С. 87—90. 8. Розенберг Г. Я. Вязова Е. П., Иванова Г. Н., Ушакова М. М., Пеанов Ю. Г., Рутберг Р. А. Получение очищенного 20 METHEMOGLOBIN BINDING TO MODEL PHOSPHOLIPID MEMBRANES препарата гемоглобина и изучение его свойств / / Пробле­ мы гематологии и переливания крови.—1975.—20, № 11.—С. 25—29. 9. Кейтс М. Техника липидологии.—М.: Мир, 1975.—322 с. 10. Benesch R., Benesch Е., Yung S. Equations for the spectro­ photometry analysis of hemoglobin mixtures / / Anal. Bio- chem.—1973.—55.—P. 245—248. 11. Chatelier R. C., Minton A. P. Adsorption of globular proteins on locally planar surfaces: models for the effect of excluded surface area and aggregation of adsorbed protein on adsorption equilibria / / Biophys. J.—1996.—71.—P. 2367—2374. 12. Stankowski S. Disc-like ligands and shape dependence at low saturation / / Biochim. et biophys. acta.—1983.—735, N 3.— P. 352—360. 13. Stankowski S. Large ligand adsorption to membranes. Coope- rativity and general ligand shapes / / Biochim. et biophys. acta.—1984.—777, N 2.—P. 167—182. 14. White S. H., Wimley W. C, Ladokhin A. S., Hristova K. Protein folding in membranes: determining energetics of pep- tide-bilayer interactions / / Meth. Enzymol.—1998.—295.— P. 62—87. 15. Bossi L., Alema S., Calissano P., Marra E. Interaction of different forms of hemoglobin with artificial lipid membranes / / Biochim. et biophys. acta.—1975.—375, N 3.—P. 477—482. 16. Горбенко Г. Л. Индуцируемое метгемоглобином перекис- ное окисление липидов в модельных мембранах / / Укр. биохим. журн.—1992.—64, № 4.—С. 108—112. 17. Marva E.t Hubbel R. Denaturing interaction between sickle hemoglobin and phosphatidylserine liposomes / / Blood.— 1994.—83, N 1.—P. 242—249. 18. Shviro Y., Zilber I., Shaklai N. The interaction of hemoglobin with phosphatidylserine vesicles / / Biochim. et biophys. ac­ ta.—1982.—687.—P. 63—70. 19. Ladokhin A. S., Selsted M. E., White S. H. Bilayer interac­ tions of indolicidin, a small antimicrobial peptide rich in tryptophan, proline and basic amino acids / / Biophys. J.— 1997.—72.—P. 794—805. 20. Горбенко Г. Я., Древаль В. И. Изучение взаимодействия феррицитохрома С с липосомами / / Укр. биохим. журн.— 1990.—62, № 5.—Р. 106—111. 21. Gorbenko G. P. Resonance energy transfer study of hemoglobin and cytochrome С complexes with lipids / / Biochim. et biophys. acta.—1998.—1409.—P. 12—24. 22. Heymann J. В., Zakharov S. D., Zhang Y. L., Cramer W. A. Characterization of electrostatic and nonelectrostatic com­ ponents of protein-membrane binding interactions / / Bio­ chemistry.—1996.—35.—P. 2717—2725. 23. Abney У., Owicki Y. Theories of protein-lipid and protein- protein interactions in membranes / / Progr. Prot.-Lipid Inter­ act.—Amsterdam, 1986.—P. 1—60. УДК 577.37 Received 21.07.98 21