Lipoxygenase regulation in vivo and in vitro by lipid compounds

Lipoxygenases (LOs) are known as one of the enzymes of lipid peroxidation. The majority of LOs are soluble enzymes and have affinity to membranes. The enzyme translocation from a cytosol to a membrane surface is one of the stages of regulation of the amount of LO catalysis products in the cell. A so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вiopolymers and Cell
Datum:2015
Hauptverfasser: Skaterna, T.D., Kopich, V.M., Kharitonenko, G.I., Kharchenko, O.V.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут молекулярної біології і генетики НАН України 2015
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/152449
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Lipoxygenase regulation in vivo and in vitro by lipid compounds / T.D. Skaterna, V.M. Kopich, G.I. Kharitonenko, O.V. Kharchenko // Вiopolymers and Cell. — 2015. — Т. 31, № 2. — С. 161-173. — Бібліогр.: 77 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-152449
record_format dspace
spelling Skaterna, T.D.
Kopich, V.M.
Kharitonenko, G.I.
Kharchenko, O.V.
2019-06-11T17:29:06Z
2019-06-11T17:29:06Z
2015
Lipoxygenase regulation in vivo and in vitro by lipid compounds / T.D. Skaterna, V.M. Kopich, G.I. Kharitonenko, O.V. Kharchenko // Вiopolymers and Cell. — 2015. — Т. 31, № 2. — С. 161-173. — Бібліогр.: 77 назв. — англ.
0233-7657
DOI: http://dx.doi.org/10.7124/bc.0008DC
https://nasplib.isofts.kiev.ua/handle/123456789/152449
577.152.1
Lipoxygenases (LOs) are known as one of the enzymes of lipid peroxidation. The majority of LOs are soluble enzymes and have affinity to membranes. The enzyme translocation from a cytosol to a membrane surface is one of the stages of regulation of the amount of LO catalysis products in the cell. A sorption to the membrane surface is described for most LOs from plant and animal sources. This review presents the data about regulation of the LO activity by the lipid compounds – both natural and chemically modified. Lipids might regulate the LO activity through: protein-lipid interactions of C2 domain with the membrane, changes in the enzyme affinity, the LOs translocation, allosteric regulation, increase in the selectivity towards substrates. The regulatory effect of active compound on the enzyme activity depends on the lipophilicity of effectors. Considering the LO activity it is necessary to take into account the enzyme microenvironment and its influence on the range of the LO products.
Ліпоксигенази (ЛО) відомі як одні з ферментів перекисного окислення ліпідів. Більшість ЛО є розчинними ферментами та характеризуються аффіністю до мембран. Транслокація ферменту з цитозолю на мембранну поверхню одна з стадій регуляції рівня продуктів ліпоксигеназного каталізу у клітині. Сорбція на мембранну поверхню описана для більшості ЛОз з рослинних та тваринних джерел. Даний огляд представляє дані по регуляції ЛОз активності природніми та хімічно модифікованими речовинами ліпідної природи. Здат­ність ліпідів регулювати ЛО активність може здійснюватись через: білок-ліпідні взаємодії C2 домену з мембраною, зміну аффінності ферменту, транслокацію ЛОз, алостеричну регуляцію, збільшення селективності до субстрату. Регуляторний вплив активної сполуки на ферментативну активність залежить від рівня ліпофільності ефекторів. При поясненні ліпоксигеназного каталізу необхідно враховувати вплив мікрооточення ферменту на рівень ЛО.
Липоксигеназы (ЛО) известны как одни из ферментов перекисного окисления липидов. Большинство ЛО растворимые ферменты и характеризуются аффиностью к мембранам. Транслокация фермента из цитозоля на мембранную поверхность одна из стадий регуляции уровня продуктов липоксигеназного катализа в клетке. Сорбция на мембранную поверхность описана для большинства ЛОз из растительных и животных источников. Данный обзор представляет данные по регуляции ЛО активности природными и химически модифицированными соединениями липидной природы. Возможность липидов регулировать ЛО активность может осуществляться через: белок-липидные взаимодействия C2 домена с мембраной, изменение аффинности фермента, транслокацию ЛОз, аллостерическую регуляцию, селективность к типу субстрата. Регуляторное влияние активного соединения на ферментативную активность зависит от уровня липофильности еффекторов. При объяснении липоксигеназного катализа необходимо учитывать влияние микроокружения фермента на уровень ЛО продуктов.
en
Інститут молекулярної біології і генетики НАН України
Вiopolymers and Cell
Reviews
Lipoxygenase regulation in vivo and in vitro by lipid compounds
Регуляція ліпоксигеназ in vivo та in vitro сполуками ліпідної природи
Регуляция липоксигеназ in vivo и in vitro соединениями липидной природы
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Lipoxygenase regulation in vivo and in vitro by lipid compounds
spellingShingle Lipoxygenase regulation in vivo and in vitro by lipid compounds
Skaterna, T.D.
Kopich, V.M.
Kharitonenko, G.I.
Kharchenko, O.V.
Reviews
title_short Lipoxygenase regulation in vivo and in vitro by lipid compounds
title_full Lipoxygenase regulation in vivo and in vitro by lipid compounds
title_fullStr Lipoxygenase regulation in vivo and in vitro by lipid compounds
title_full_unstemmed Lipoxygenase regulation in vivo and in vitro by lipid compounds
title_sort lipoxygenase regulation in vivo and in vitro by lipid compounds
author Skaterna, T.D.
Kopich, V.M.
Kharitonenko, G.I.
Kharchenko, O.V.
author_facet Skaterna, T.D.
Kopich, V.M.
Kharitonenko, G.I.
Kharchenko, O.V.
topic Reviews
topic_facet Reviews
publishDate 2015
language English
container_title Вiopolymers and Cell
publisher Інститут молекулярної біології і генетики НАН України
format Article
title_alt Регуляція ліпоксигеназ in vivo та in vitro сполуками ліпідної природи
Регуляция липоксигеназ in vivo и in vitro соединениями липидной природы
description Lipoxygenases (LOs) are known as one of the enzymes of lipid peroxidation. The majority of LOs are soluble enzymes and have affinity to membranes. The enzyme translocation from a cytosol to a membrane surface is one of the stages of regulation of the amount of LO catalysis products in the cell. A sorption to the membrane surface is described for most LOs from plant and animal sources. This review presents the data about regulation of the LO activity by the lipid compounds – both natural and chemically modified. Lipids might regulate the LO activity through: protein-lipid interactions of C2 domain with the membrane, changes in the enzyme affinity, the LOs translocation, allosteric regulation, increase in the selectivity towards substrates. The regulatory effect of active compound on the enzyme activity depends on the lipophilicity of effectors. Considering the LO activity it is necessary to take into account the enzyme microenvironment and its influence on the range of the LO products. Ліпоксигенази (ЛО) відомі як одні з ферментів перекисного окислення ліпідів. Більшість ЛО є розчинними ферментами та характеризуються аффіністю до мембран. Транслокація ферменту з цитозолю на мембранну поверхню одна з стадій регуляції рівня продуктів ліпоксигеназного каталізу у клітині. Сорбція на мембранну поверхню описана для більшості ЛОз з рослинних та тваринних джерел. Даний огляд представляє дані по регуляції ЛОз активності природніми та хімічно модифікованими речовинами ліпідної природи. Здат­ність ліпідів регулювати ЛО активність може здійснюватись через: білок-ліпідні взаємодії C2 домену з мембраною, зміну аффінності ферменту, транслокацію ЛОз, алостеричну регуляцію, збільшення селективності до субстрату. Регуляторний вплив активної сполуки на ферментативну активність залежить від рівня ліпофільності ефекторів. При поясненні ліпоксигеназного каталізу необхідно враховувати вплив мікрооточення ферменту на рівень ЛО. Липоксигеназы (ЛО) известны как одни из ферментов перекисного окисления липидов. Большинство ЛО растворимые ферменты и характеризуются аффиностью к мембранам. Транслокация фермента из цитозоля на мембранную поверхность одна из стадий регуляции уровня продуктов липоксигеназного катализа в клетке. Сорбция на мембранную поверхность описана для большинства ЛОз из растительных и животных источников. Данный обзор представляет данные по регуляции ЛО активности природными и химически модифицированными соединениями липидной природы. Возможность липидов регулировать ЛО активность может осуществляться через: белок-липидные взаимодействия C2 домена с мембраной, изменение аффинности фермента, транслокацию ЛОз, аллостерическую регуляцию, селективность к типу субстрата. Регуляторное влияние активного соединения на ферментативную активность зависит от уровня липофильности еффекторов. При объяснении липоксигеназного катализа необходимо учитывать влияние микроокружения фермента на уровень ЛО продуктов.
issn 0233-7657
url https://nasplib.isofts.kiev.ua/handle/123456789/152449
citation_txt Lipoxygenase regulation in vivo and in vitro by lipid compounds / T.D. Skaterna, V.M. Kopich, G.I. Kharitonenko, O.V. Kharchenko // Вiopolymers and Cell. — 2015. — Т. 31, № 2. — С. 161-173. — Бібліогр.: 77 назв. — англ.
work_keys_str_mv AT skaternatd lipoxygenaseregulationinvivoandinvitrobylipidcompounds
AT kopichvm lipoxygenaseregulationinvivoandinvitrobylipidcompounds
AT kharitonenkogi lipoxygenaseregulationinvivoandinvitrobylipidcompounds
AT kharchenkoov lipoxygenaseregulationinvivoandinvitrobylipidcompounds
AT skaternatd regulâcíâlípoksigenazinvivotainvitrospolukamilípídnoíprirodi
AT kopichvm regulâcíâlípoksigenazinvivotainvitrospolukamilípídnoíprirodi
AT kharitonenkogi regulâcíâlípoksigenazinvivotainvitrospolukamilípídnoíprirodi
AT kharchenkoov regulâcíâlípoksigenazinvivotainvitrospolukamilípídnoíprirodi
AT skaternatd regulâciâlipoksigenazinvivoiinvitrosoedineniâmilipidnoiprirody
AT kopichvm regulâciâlipoksigenazinvivoiinvitrosoedineniâmilipidnoiprirody
AT kharitonenkogi regulâciâlipoksigenazinvivoiinvitrosoedineniâmilipidnoiprirody
AT kharchenkoov regulâciâlipoksigenazinvivoiinvitrosoedineniâmilipidnoiprirody
first_indexed 2025-11-27T07:29:21Z
last_indexed 2025-11-27T07:29:21Z
_version_ 1850806450298814464
fulltext 161 ISSN 0233-7657 Biopolymers and Cell. 2015. Vol. 31. N 3. P. 161–173 doi: http://dx.doi.org/10.7124/bc.0008DC Reviews UDC 577.152.1 Lipoxygenase regulation in vivo and in vitro by lipid compounds T. D. Skaterna, V. M. Kopich, G. I. Kharitonenko, O. V. Kharchenko Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine 1, Murmans'ka Str., Kyiv, Ukraine, 02660 skaterna.t@ukr.net Lipoxygenases (LOs) are known as one of the enzymes of lipid peroxidation. The majority of LOs are soluble enzymes and have affi nity to membranes. The enzyme translocation from a cytosol to a mem- brane surface is one of the stages of regulation of the amount of LO catalysis products in the cell. A sorp- tion to the membrane surface is described for most LOs from plant and animal sources. This review presents the data about regulation of the LO activity by the lipid compounds – both natural and chemi- cally modifi ed. Lipids might regulate the LO activity through: protein-lipid interactions of C2 domain with the membrane, changes in the enzyme affi nity, the LOs translocation, allosteric regulation, increase in the selectivity towards substrates. The regulatory effect of active compound on the enzyme activity depends on the lipophilicity of effectors. Considering the LO activity it is necessary to take into account the enzyme microenvironment and its infl uence on the range of the LO products. K e y w o r d s: lipoxygenase, allosteric regulation, phospholipids, inhibition, activation. © 2015 T. D. Skaterna et al.; Published by the Institute of Molecular Biology and Genetics, NAS of Ukraine on behalf of Biopolymers and Cell. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited Biological signifi cance of the lipoxygenase pathway products in living organisms explains an interest paid to the research on regulation mechanisms of this key enzyme and a possibility to correct the level of lipoxygenase metabolites. Lipoxygenases (oxi- doreductase, EC 1.13.11.- ; LO) are the enzymes of lipid metabolism, which catalyze the oxygen inser- tion into the 1,4-cis,cis-pentadiene fragment of poly- unsaturated fatty acids (PUFAs) with production of the corresponding hydroperoxide derivatives (HP). The LO products of PUFAs oxidation pathways are diverse signal compounds, animals leukotrienes and lipoxynes, coral prostaglandin-like LO metabolites, lactones of microorganisms, plant jasmonates, etc. They are involved in the apoptosis and cell prolifera- tion, metabolism and transportation, cell-cell inter- actions and infl ammatory processes. The quantita- tive and qualitative composition of LO metabolites changes at various pathological conditions of ani- mal, human and plant cells during the adaptation to environmental factors and at the conditions of in- tense growth and development. This is why the fi nd- ing of new substances, which can regulate the LO activity, is a task of urgent importance. The factors potentially able to regulate the 5-LO activity are as follows: 1 – factors changing the en- zyme activity by facilitating the substrate accessibili- ty; 2 – Fe2+oxidation to Fe3+active state; 3 – stabiliza- tion of the active 5-LO-form. Ions Ca2+, Mg2+, phos- pholipids, glycerol, membranes, ATP are capable of particular increasing the 5-LO activity. The hydroper- oxides level also determines the 5-LO activity and regulates the redox state of ferrum in the active site. Posphorylation and interaction with the protein fac- tors from polymorphonuclear leukocytes (coactosin- like protein up-regulates the Ca2+-induced 5-LO activ- ity [1]) and the membrane associated protein FLAP (5-LO activating protein bounds with a nuclear mem- brane [2]) are related to the factors, which are able to control the enzyme activity in the cell. 162 T. D. Skaterna, V. M. Kopich, G. I. Kharitonenko, O. V. Kharchenko In cells, 5-LO locates in a soluble form in cytosol (eosinophils, neutrophils, macrophages) or in a nu- clear soluble compartment associated with chroma- tin (alveolar macrophages, Langerhans cells) [3-4]. In plants, the main pool of 13-LO products associ- ates with inner and external plastids membranes [5–7]; 13-hydroperoxide lyase and allene oxide syn- thase are the enzymes, which utilize the products of 13-LO oxidation of linoleic (LA) and linolenic acids as the substrates and are also connected with inner and external plastids membranes respectively. The source of 9-hydroperoxides synthesis is predomi- nantly the plant cytoplasmic membrane [5]. It was suggested that there is a connection between the LO activity of microsomal and mitochondrial mem- branes, but the data presented are insuffi cient [7–8]. 5-LO is also associated with the lipid rafts with pro- teinkinase C II and other rafts proteins which were demonstrated in the mantle cell lymphoma [9]. The substrates of LO reaction are polyunsaturated fatty acids that are a part of membrane phospholip- ids. The majority of LO are soluble enzymes and have affi nity to membranes. Under cell stimulation, 5-LO migrates to the nuclear membrane where an- other enzyme phospholipase A2 liberates arachidonic acid (AA) from phospholipids during the reaction, which is utilized by 5-LO as a substrate. The mem- brane associated protein FLAP facilitates the sub- strate transport to 5-LO [10], which is connected with the nuclear membrane by amino acids. This protein can be phosphorylated by MAPK-activated proteinkinase (MAPKAPK)-2 and ERKs. Thus, FLAP controles the 5-LO products synthesis. 1. Regulation of lipoxygenase activity by cell membrane compounds The main part of the LO reaction substrates, polyun- saturated fatty acids, is located in the complexes com posed of membranes or in the lipoprotein com- plexes. PUFAs are insoluble within the range of pH physiological values for most LO. pHopt is more al- kaline for 13-LO, and this type of LO does not re- quire an interaction with the membrane surface for active transition. The enzyme translocation from cy- tosol to the membrane surface is one of the stages of regulation of the amount of LO catalysis products in the cell. A sorption to the membrane surface is de- scribed for most LO of plant and animal sources. In animal cells the leukotrienes biosynthesis starts with the 5-LO translocation from cytosol to the nu- clear membrane surface. Phospholipase A2 liberates AA and thus it is the forerunner to LO. The next en- zyme in transforming HP LTA4 synthase is also con- nected with the nuclear membrane [11]. It is assumed that the 5-LO exclusive sorption on the nuclear me- m brane surface depended on the membrane associa- ted protein FLAP (fi ve-lipoxygenase activating pro- tein) [12] and a high affi nity to zwitterionic phospha- tidylcholine (PC) [24, 26], which is a dominant com- ponent of the nuclear membrane. FLAP also has a high affi nity to the enzyme and PUFAs. Due to these properties, FLAP not only provides the enzyme as- sociation with specifi c membrane component but also regulates the enzyme interactions with the substrate creating local clusters of a high PUFAs concentra- tion. The sequence of FLAP is 31 % identical to the microsomal LTC4 synthase [13]. FLAP can be asso- ciated with the endoplasmatic reticulum and lipid rafts, as the 5-LOX association with lipid rafts in man tle cell lymphoma was established [9]. In te res- tin gly, FLAP was shown to be a part of secretory vesicles from the human neutrophils and exosomes of human monocyte-derived macrophages or mono- cyte-derived dendritic cells with LTA4 hydrolase and LTC4 synthase [14]. Probably, the complex of 5-LO, FLAP, LTA4 hydrolase and LTC4 synthase with the membrane vesicles can transfer out of the cell and the reaction products of this complex regulate the metabolism outside as compounds of distant action. Possibly, the mechanism for LO from other sources is similar, which is confi rmed by the activation of potato tuber 5-LO in the presence of FLAP [15]. 5-LO demonstrates the activity at the interface lipid:water. The reaction runs similarly to phospholi- pase A2. The heterophase nature of the reaction is determined by the presence in the enzymes structure of C2-like domain - N-terminal domain consisting of eight antiparallel β-sheets. This domain has some homology of its structure and function with C2 do- main of phospholipases and proteinkinase C [17–19]. 163 Lipoxygenase regulation in vivo and in vitro by lipid compounds Similarity of mechanisms of these interactions pro- vides a strong evidence of their universality in reg- ulating the activity of key enzymes of the signaling systems. The residues in the ligand binding loops of β-sandwich bind Ca2+, cellular membranes, and co ac tosin-like protein (CLP) [4, 21–22]. C2 domain is characteristic of the association of membrane phospholipids and this process can be mediated by Ca2+ ions [23]. The interaction with membrane surface was de- scribed for the cloned 5-LO from leucocytes [24–25] and electrophoretically pure 15-LO from reticulocy tes [26]. Using the biomembrane models consisting of phospholipids (lecithin or phosphatidylinositol) and linoleic acid, it has been shown that PUFAs oxidation carried out by potato 5-LO proceeds directly on the membrane [27–28]. The main factors providing the enzyme sorption on the membrane surface are hydro- phobic and electrostatic interactions. It was established that with the replacement of certain amino acid resi- dues in the 15-LO molecule from reticulocytes, the hydrophobic bonds are formed between Phe70, Trp181, Tyr15, Leu71 Leu195 and lipid part of the membrane; these are tryptophan residues in the case of 5-LO from leukocytes (Trp13, Trp75, Trp102) [24]. Isolated from hu- man 5-LO, the PLAT domain was able to aggregate and therefore could not be used to study the interac- tions. A substitution of the membrane-binding tryp- tophan 75 with glycine led to reducing the aggregation and increased its thermal stability [21]. The LO sorption on the membrane surface causes changes in the enzyme molecule, in particular, the changes in the protein confi guration. Also, an addi- tional regulatory effect on the LO activity infl uences the biochemical and physicochemical properties of the membrane matrix. According to [25], the 5-LO molecule from leukocyte is located on the membrane surface at approximately 450; one of tryptophans (probably Trp75) is inserted into the hydrophobic layer to a depth of 8-9 A0 from the membrane centre. Trp13 and Trp102 interact with the surface but are not inserted into the lipophilic membrane layer. This collocation allows tight fi xation of the enzyme mol- ecule and reduces the distance between the LO ac- tive center and the membrane surface, where the substrate reaction occurs. Similar processes can sig- nifi cantly alter the enzyme conformation and its cat- alytic properties. The interaction of the 13-LO from soybeans with the surface of phosphatidylcholine micelles changes the enzyme specifi city at the ca- talysis of equimolar mixture of 13-hydroperoxide and 9-hydroperoxide of linoleic acid [29]. Phospholipids The composition of membrane structures is an im- portant factor in the regulation of the enzyme sorp- tion. The published data are contradictory when it concerns the infl uence of phospholipids (PL) with different charges on the LO activity (Table 1). For instance, a high affi nity of the animal enzymes to phosphatidylcholine was shown, in contrast to ani- onic phospholipids [18, 24, 26, 35, 53]. During puri- fi cation of 5-LO from human leukocytes, it was ob- served that the enzyme activity depends on micro- somal membranes [30] since the synthetic phos- phatidylcholine (PC) vesicles, which are similar to the cell membrane fraction, act as the enzyme stimu- lating factor. PC promoted Ca2+ stimulation of the 5-LO activity in vitro [35]. In the presence of Ca2+, the isolated C2-like β-sheet domain of 5-LO has a higher affi nity to the PC zwitterion vesicles than to the vesicles of anionic phosphatidylserine (PS) and phosphatidylglycerol. The selectivity of 5-LO asso- ciation with the nuclear membrane is determined by the specifi city of the enzyme binding with PC (a nu- clear membrane is rich in PC) and this association is Ca2+-dependent [24–25]. Three tryptophans (Trp13, Trp75, Trp102) were identifi ed, which participate in the interactions of ligand-binding loop [2]. It is assumed that the 5-LO selectivity to PC is im- portant for the enzyme contact with the nuclear en vi- ronment [24] as β-sandwich is required for tran slo- cation of soluble 5-LO from cytosol to the nuclear mem brane [55]. It is believed that calcium ions pro- mote the association of C2-like domain of 5-LO (as well as phospholipase A2) with the PC membrane in two ways: local neutralization of anionic surface of the protein, and changing the orientation of ali pha tic and aromatic side chains of amino acid residues in the Ca2+-binding loop, which leads to their incorpo- 164 T. D. Skaterna, V. M. Kopich, G. I. Kharitonenko, O. V. Kharchenko ration into the membrane and hydrophobic interac- tion [24]. The Ca2+-induced interaction with PC sta- bilizes 5-LO and the membrane, and results in the enzyme activation [18]. The other results were obtained in the study on the interaction of the potato tubers 5-LO with differently charged phospholipids. For this enzyme, the activat- ing effect of phosphatidic acid (PA) [48], phosphati- dylinosite (PI) [27], phosphatidylserine (PS) [27] in the micellar system was demonstrated. The differences in the PL effects on the enzymes from plant and animal sources can be explained com- paring the affi nity of these enzymes to diversely cha- rged phospholipids, which translocate to the mem- Table 1. Lipid compounds and action on lipoxygenase enzymes Lipid compounds Enzyme Action on enzyme Reference PC vesicles 5-LO human leukocytes activation [30] 1-palmitoyl-2-arachidonoyl-sn- glycero-3-phosphocholine 5-LO human activation of membrane binding [25] sulfated derivatives of galactocerebroside 5-LO human inhibition in the cell [31] 1-oleoyl-2-acetylglycerol 5-LO human stimulation by binding with C2-like domain [32] cholesterol, cholesterol sulfate, cholesterol phosphate 5-LO human inhibition of activity [33] arachidonic acid 15(S)-HETE 5-LO human enzyme translocation to the membrane [34] PC С2-like domain of 5-LO human affi nity to PC vesicles in Ca2+ presence [35] NO-LA, NO-OA human PMNL 5-LO inhibition of activity [36] 5-HPETE, 12-HPETE, 15-HPETE, 13-HPODE 5-LO mammalian enzyme activation [37–38] 13-HODE 15-hLO-1 change of substrate specifi city [39] 15-HETE 15S-LO enzyme activation [40] 12-HETE 15-hLO-1 increase of substrate specifi city towards AA over LA [41] oxo-lipids 15-LO human inhibition of activity [42] (Z)-9-octadecenyl sulfate 15-LO human inhibition of activity [43] 13-HODE 15-hLO-2 epithelial changing the substrate specifi city [41] 13-HPODE 15-hLO-2 epithelial effect on substrate specifi city [44] 13-HPODE 15-LO-1 human reticulocyte effect on substrate specifi city [44] oxo-lipids: 5-oxo-ETE, 15-oxo- ETE, 12-oxo-ETE 12-LO human inhibition of activity [42] 13(S)-hydroxyoctadeca- 9(Z),11(E)-dienoic acid 12S-LO human platelete enzyme dimmerization [45] PC, PI 12-LO porcine leukocytes inhibition of activity [46] (Z)-9-octadecenyl sulfate LO-1 soybean inhibition of activity [43] 12-HETE LO-1 soybean increase of substrate specifi city [47] PC vesicles 13-LO soybean changes of equimolar mixture products of 13-HPODE/9-HPODE [29] PA 5-LO potato tubers enzyme activation [48–49] PI 5-LO potato tubers enzyme activation [27] PS 5-LO potato tubers enzyme activation [27] LHA 5-LO potato tubers 12-LO porcine leukocytes 15-LO rabbit reticulocyte 13-LO soybean inhibition of activity [50–52] 165 Lipoxygenase regulation in vivo and in vitro by lipid compounds brane through the same mechanism [19, 24]. Affi nity to a particular lipid is associated with the enzyme localization in the cell. So, the affi nity of phospholi- pase A2 and 5-LO from leukocytes to PC is deter- mined by their location on the nuclear membrane surface where the molar moiety of phospholipid is 48 %. As regards protein kinase C and 5-LO from potato tubers, they demonstrate affi nity to anionic PL, which is explained by the sorption of these en- zymes on the plasmalemma surface enriched in ani- onic PL. 1-palmitoyl-2-arachidonoyl-sn-glycero-3- phosphocholine caused the enzyme connection and deeper penetration. This may assist 5-LO to be clos- er to the nuclear environment composed of lipids with a high content of arachidonic acid [25]. The 5-LO from animal sources interacts also with cationic phospholipids [18]. This interaction is stro- nger and occurs in the absence of calcium ions al- though they increase the enzyme activity. It was sug- gested that 5-LO can bind to the membrane in «pro- ductive» or «unproductive» manner although bind- ing to the membrane surface does not activate 5-LO itself. In turn, it was demonstrated that anionic sul- fated derivatives of galactocerebroside (sulfatides lipids) inhibit the 5-LO activity in the cell [31]. Monoglycerides and diacylglycerols Monoglycerides and diacylglycerol are other types of lipids that can activate 5-LO. The most effective activating compounds are 1-oleoyl-2-acetylglycerol (OAG), 1-O-hexadecyl-2-acetyl-sn-glycerol and 1,2-dioctanoyl-sn-glycerol [32]. Ca2+ prevents the sti- mulating effect of OAG; there is no activating effect of OAG in the presence of phospholipids or cell me- m brane. The mutant 5-LO with three tryptophan re si- dues (Trp13, – 75, – 102) in the C2-like domain was not stimulated by OAG. It was established that these residues are involved in the interaction of 5-LO with OAG, and that gives us a reason to believe that OAG directly stimulates 5-LO by the interaction with pho- spholipid-binding site located in the C2-like domain. Another compound, diacylglycerol (DAG), is also required for the association of the enzyme with the nuclear membrane via the C2-like domain. Perhaps this mechanism is similar to the enzymes with C2 domains in their structure and was investigated for the protein kinase C in more details. The protein ki- nase Cε deeply penetrates to the plasma membrane with C2 domain depending on the DAG generation due to the activity of phospholipase D / phosphatidic acid phosphatase [20]; the protein kinase C2 domain, activated by Ca2+ in phosphatidylserine-dependent way, binds to the membrane whereas the C1 domain is involved in the following immersion into the membrane and binding with DAG [18]. Uncharged glycerol seems to bind with the C2- like domain without charge neutralization or changes in the orientation of the enzyme side chain caused by calcium ions. OAG, like Ca2+, protects 5-LO from the glutathione peroxidase-1 inhibitor [32]. OAG is a result of the phospholipase D activity in the cell. Preincubation of human polymorphonuclear leuko- cytes with the phospholipase D inhibitor resulted in decreased synthesis of 5-LO products and blocked the 5-LO translocation from cytosol to the nuclear membrane [56], whereas OAG (30 μM) reversed the inhibitory effect of 1-butanol on the synthesis of 5-LO products. Cholesterol, cholesterol sulfate The addition of cholesterol to the membrane prepa- ration (20 %) reduces the enzyme activity by half [25] and cholesterol sulfate inhibits 5-LO in intact cells [33]. The fact that the leukotrienes production in the cell is regulated by cholesterol sulfate suggests the possibility of regulatory role of sulfotransferases/ sulfatases in the 5-LO products synthesis. Cholesterol sulfate regulates the activity of serine proteases, es- pecially proteinkinase C isoforms, phosphatidylino- sitol-3-kinase, and chymotrypsin. Cholesterol pho- sphate, a synthetic anionic cholesterol derivative, acts as a more potent inhibitor of the leukotrienes synthesis than cholesterol sulfate [33]. According to the proposed mechanism of action, cholesterol and its derivatives may inhibit the protein-lipid interac- tions of the C2 domain of 5-LO enzyme with phos- pholipase A, which interacts strongly with zwitterion phosphatidylcholine. These interactions reduce the substrate release from 5-LO and thus decrease the enzyme activity in the cell. The cholesterol sulfate 166 T. D. Skaterna, V. M. Kopich, G. I. Kharitonenko, O. V. Kharchenko structure is similar to tirucallic acid, which directly binds to the 5-LO protein [57]. Polyunsaturated fatty acids (PUFAs) and their derivatives There are the data demonstrating LO regulation by other lipids PUFAs. Interestingly, the 5-LO substrate arachidonic acid (AA) can regulate the 5-LO translo- cation in human neutrophils [34]. An application of the redox and competitive 5-LO inhibitors and experi- ments with the FLAP inhibitor and the intracellular Ca2+ chelator demonstrated that the AA-re gu lated 5-LO translocation is FLAP- and Ca2+-dependent. Altogether, the facts indicate the regulation of 5-LO translocation by AA which exists at/or separately of the catalytic site. Moreover, the oxidized de rivatives also infl uence LO binding: 15(S)-HETE stro ngly in- duces the 5-LO translocation whereas 12(S)-HETE does not [34]. The specifi c LO products can al so acti- vate some types of LO. Perhaps, AA can bind directly with the enzyme molecule like it was desc ri bed for the AA/protein kinase C [58]. AA was shown to activate directly protein kinase C, involving a sequential C2. This suggests a model of activation, in which an in- crease in intracytosolic Ca2+ leads to the interaction of arachidonic acid with the Ca2+-binding region; only after this step, does the C1A subdomain interact with arachidonic acid, leading to the complete activation of the enzyme. Com parison of phospholipase A2 (which has C2 and catalytic domains) and 15-LO [59], shows that the association of the membrane surface promotes the correct orientation of amino acid residues in the catalytic domain of 5-LO. The oxidized PUFAs are also able to infl uence the substrate specifi city as it was described for 13-HODE, which can change the sub- strate specifi city of 15-hLO-1 [47]. The products of one LO isozyme can be used to activate another LO isozyme, potentially regulating each other’s activity in the cell. It have been shown that 5-HPETE, 12-HPETE, 15-HPETE, and 13-HPODE activated 5-hLO [37–38], 15-HETE activated 15S-LO, and 13-HODE activated epithelial 15-hLO-2 [40–41]. 13-HPODE activated epithelial 15-hLO-2 and retic- ulocyte 15-hLO-1 [44]. 12-HETE increased the sub- strate specifi city of sLO-1 towards AA, when chal- lenged with an LA/AA mixture [39]. 12-HETE in cre- a ses also the substrate specifi city towards AA over LA for 15-hLO-1 [47]. One of the major 15-hLO-1 products, 13-(S)-hydroperoxy-9,11-(Z,E)-octadecadie- noic acid (13-HPODE) from LA, upregulates the MAP kinase signaling pathway, the major 15-hLO-2 product, 15-(S)-HPETE from AA, down-regulated MAP kinase. The reaction of nitric oxide and nitrite-derived spe- cies with PUFAs generated electrophilic fatty acid nitroalkene derivatives with NO2: nitro-oleic (NO- OA) or nitro-linoleic acid (NO-LA) caused the con- centration-dependent and irreversible inhibition of the 5-LO activity in human PMNL induced alkyla- tion of enzyme Cys418. NO-FAs acted as a selective inhibitor for 5-LO and did not affect the activity of the platelet-type 12-LO (ALOX12) or 15-LO-1- (ALOX15) in intact cells or recombinant protein [36]. Only 5-LO possessed functionally relevant nu- cleophilic amino acids within the catalytic center as potentially sensitive to an electrophilic attack. Another N-containing derivative of PUFAs is lino- leyl hydroxamic acid (LHA). LHA was shown to be an inhibitor for pt5-LO [50], soybean 15-LO [52, 60], porcine leucocytes 12-LO [51], rabbit reticulocyte 15- LO. Using the model system of mixed micelles with constant molar ratio, it was found that LHA acted as a noncompetitive inhibitor of pt5-LO. The LHA oxy- dized derivatives exhibited the same inhibition effects as nonoxidized linoleyl hydroxamic acid on potato tu- ber 5-LO and porcine leucocyte 12-LO. The pt5-LO interactions with PA led to oxidation of nonspecifi c reaction substrate – LHA [61]. These results suggest that the enzyme activity can be potentially regulated by this modifi ed inhibitor at the cell level. A high affi nity of lipids to lipoxygenase is of use for the synthesis lipoxygenase inhibitors. Some syn- thetic lipid derivatives inhibit the lipoxygenase cata- lysis. 1-oxyl-2,2,6,6-tetramethylpiperidinyl esters of octadecanoic and dodecanoic acids decrease the rate of the linoleic acid and linoleyl alcohol oxidation in the micellar system catalyzed by 5-LO [62–63]. The inhibition mechanism is proposed, which includes the interaction of lipophilic nitroxyl compounds with the radical intermediate formed in the catalytic proc- ess and the blocking of free radical transformation. It 167 Lipoxygenase regulation in vivo and in vitro by lipid compounds is demonstrated that the inhibition effect of fatty acid derivatives is determined by the substrate nature and the presence of allosteric effector. Oxo-lipids Recent publications have raised an interest to one more type of lipids – oxo-lipids, which are a large family of oxidized human lipoxygenase products. The electrophilic oxo-lipids, such as 15-oxo-5,8,11,13- (Z,Z,Z,E)-eicosatetraenoic acid (15-oxo-ETE) and 12- oxo-5,8,10,14-(Z,Z,E,Z)-eicosatetraenoic acid (12-oxo- ETE), are derived hydroperoxyeicosatetraenoic acid and hydroperoxyoctadecadienoic acid in the macro- phage and are produced by conversion of the LO products. It was demonstrated that 15-oxo-ETE ex- hibited the highest potency against h12-LOX as an inhibitor. 12-oxo-ETE had comparable potency against h15-LOX-1 and inhibited h12-LOX. These data could indicate selective regulation of h12-LOX by the h15-LOX activity [42]. 2. Mechanisms of lipids infl uence Physical and chemical properties of membranes An infl uence of the membranes structural compo- nents on the LO activity depends on their physical and chemical properties. The greatest effect on sorp- tion process of LO has fl uidity of the membrane structure determined by the number of 1,4-cis,cis- pentadien fragments consisting of fatty acids [25] and the membrane surface charge. For lipids of large unilamellar vesicles with increasing concentrations of cationic lipid 1,2-dymiristoil-glycero-3-etyl phos- phocholine, the 5-LO activity enhances, but in the presence of anionic lipid 1,2-dipalmitoyl-sn-glyce- ro-3-phosphocholine, the activity decreased [18]. The data obtained showed that unsaturation of lipid acyl chain is a key modulator of the 5-LO activity for both zwitterionic and anionic lipid membranes [25]. The infl uence of cholesterol and cholesterol sulfate (natural substance) on the LO activity is tho- ught to be associated with changes in the physical properties of the membrane surface since these sub- stances are known as agents increasing the mem- brane rigidity. As a component of membrane, cho- lesterol sulfate plays a stabilizing role preventing osmotic lysis, supporting adhesion of cells. The elec- tric charge of the membrane surface affects the ori- entation of polar phosphatidylcholine main groups in the membrane: when the membrane surface charge is negative, the positively charged ends of the choline group move together into the membrane due to elec- trostatic attraction. The penetration of cholesterol sulfate stabilizes the membrane vesicles and reduces the lipid bilayer fl exibility, namely, reduces the cho- lesterol membrane fl uidity. The penetration of cho- lesterol residues reduces the permeability of mem- branes and increases their orderliness [33]. Thus, membrane fl uidity is a key modulator of the mem- brane binding and activity of 5-LO [25]. Another li- pid phosphatidic acid (PA) is able to separate into microdomains or induce a negative membrane cur- vature due to the charged small head groups located close to the bilayer acyl chains, a high affi nity to biva- lent cations and a tendency to the formation of inter- molecular hydrogen bonds. These properties lead to destabilization of the PA lipid bilayer [64]. The length and unsaturation differences between subst- rates are essential for regulation of the LO activity as it was shown for the human epithelial 15-lipoxygen- ase-2 (15-LOX-2) with 13-(S)-HODE which changed the substrate specifi city for arachidonic acid (AA) and (γ)-linolenic acid (GLA); it indicates that the al- losteric structural changes in the active site discrimi- nate between AA and GLA to achie ve opposite ki- netics effects [65]. The additional infl uence of PL is described as the change of thermodynamic parameters of lipoxygen- ase thermoinactivation [66]. The rate constants and activation energy of enzyme thermoinactivation we- re shown to increase in the presence of PA. It was suggested that hydrophobic forces play an essential role in the interaction between 5-LO and phospha- tidic acid that can induce certain conformational changes of the enzyme molecule. Allosteric interactions It was reported that a number of natural and synthet- ic compounds affect the lipoxygenase activity by al- 168 T. D. Skaterna, V. M. Kopich, G. I. Kharitonenko, O. V. Kharchenko losteric mechanism [43, 67–70]. A regulatory center exists in the enzyme molecule, which shows affi nity to both substances: activator and linoleic acid as was described for (R,S)-2-hydroxy-2-trifl uoromethyl-trans- n-octadec-4-enoic acid (HTFOA), a powerful acti- vator of pt5-LO [71]. The kinetic isotope effect stud- ies demonstrated that unsaturated sulfonic acids are able to inhibit the activity of 15-LO from reticulo- cytes and soybean LO-1 in the interaction with al- losteric site of these enzymes [68, 70]. Compounds (Z)-9-octadecenyl sulfate and (Z)-9-palmitoyl sul- fate were replaced with the PUFA molecules consid- ering two-fold higher affi nity for regulatory site compared with the reaction substrate – linoleic acid. The affi nity rised with an increase of carbon chain length and slightly depended on the effector charge. It is believed that hydrophobic bonds play a key role in the interaction with allosteric regulator center. This is supported by research of the nordihydro- guaiaretic acid action. This compound is an inhibitor of soybean, human 12- and 15-LO [72]; in return hy- drophobic derivatives increase LO catalysis through allosteric mechanism for human 15-LO. Therefore, it is thought that the lipophilicity moiety of effectors can change the regulatory infl uence of an active com- pound on the enzyme activity. The membranes con- Fig. 1. The proposed scheme of relationship of lipid components and the enzyme lipoxygenase in plant and animal cells. Plant cell. 9-LO and 13-LO are localized in either a soluble or an associated form with membrane (13-LO is connected with plastide membrane). LO oxidation of PUFAs takes place on membrane surface. PLD, PLA1, PLA2 liberate C18:2, C18:3 or C16:3 from phospholipids. PC, PI, PS and PA as natural membrane compounds can bind with 9-LO and change activity of LO regulated level of oxylipins. It is assumed that PA as allosteric activator can induce formation of 9-LO dimmers in plant cell like it was dem- onstrated for animal LOs. Animal cell. In the resting cell, 5-LO is localized in either cytosol or in compartment inside the nucleus [22]. On activation, 5-LO translocates to the nuclear envelope rich with PC, where enzyme connects with FLAP. PLA liberates AA from phospholipids. FLAP is thought to participate in transfer of AA to LO. Molecules of AA increase translocation of 5-LO as well as 15(S)-HETE. PC, PI, PA and Chol since natural membrane compounds can bind with LOs and change activity of LO regulated level of LO metabolites. 5-LO can be a part of lipids rafts [9]. 12(S)-LO (in the presence of 13(S)-HODE) and 5-LO have ability to dimmerization. Oxo-lipids and NO-derivatives of PUFAs inhibit 15-LO and 12-LO in the cell. LO – lipoxygenase; HP – hydroperoxide; PL – phospholipids; PA – phosphatidic acid; PC – phosphatidylcholine; PI – phosphati- dylinosite; PS – phosphatidylserine; Chol –cholesterol; AA – arachidonic acid; LA – linoleic acid; PLD – phospholipase D; PLA1, PLA2 – phospholipase A1 and A2 respectively 169 Lipoxygenase regulation in vivo and in vitro by lipid compounds taining lipids with unsaturated hydrocarbon chains have a signifi cant stimulatory effect on the 5-LO ac- tivity [25]. An importance of lipophilicity of the LO allosteric regulator is coordinated with primacy of hydrophobic bonds in providing the enzyme sorp- tion on the membrane surface and involving allos- teric regulation of these processes. The membrane phospholipids phosphatidylcho- line (PC) and phosphatidylinosite (PI) caused almost complete disappearance of the S-shaped curve of Vst depending on the substrate concentration of LA in micellar system in studies with highly purifi ed prep- aration of 5-LO from potato tubers [73], and both phospholipids replaced the substrate molecules in the regulatory site of 5-LO. Both phospholipids (PC and PI) in the micellar system were shown to inhibit another lipoxygenase 12-LO from porcine leukocy- tes [46]. These lipids are able to compete with the sub strate reaction LA in one of the centers (alloster- ic) and change the enzyme affi nity to the substrate: PI decreases Ks and Kns, whereas PC causes the op- posite effect. Anionogenic phospholipid phosphati- dic acid (PA) demonstrated the activation of pt5-LO and replaced the substrate molecules in allosteric si- te, that decreased the non-enzymatic product level [74]. These data suggest the compensatory action of natu- ral components of membrane in the LO catalysis. The PLAT domain has an ability to participate in allosteric relationships. It plays a role in membrane affi nity, allostery and substrate specifi city. Removal of the PLAT domain affects the degree of allostery and moderates the communication pathway between the allosteric and catalytic sites [59]. The proposed scheme of relationship of the lipid components and the enzyme lipoxygenase in plant and animal cells is presented in Figure 1. Dimmerization of proteins The recent data point to the LO capability to transit to the dimmer state, which was demonstrated for the hu- man 5-LO [75]. In aqueous solutions, the rabbit 12/15- LO is mainly present as a hydrated monomer. The rabbit 12/15LOX functions as a monomer that domi- nates in solution, it dimmerizes at higher protein con- centrations in the presence of salt and increasing de- gree of freedom of the N-terminal PLAT domain [75]. The human platelet-type 12S-LOX is stable as a dim- er, in contrast to h-5LOX and r-12/15LOX, which are monomeric. The enzyme undergoes ligand-induced dimmerization in aqueous solutions under the action of allosteric effector 13(S)-hydroxyoctadeca-9(Z),11 (E)-dienoic acid [76]. In the presence of Ca2+, 5-LO from rat basophilic leukemia (RBL-1) cells demon- strated the non covalent, monomer-dimer interaction, and both forms of the enzyme were present and only the high molecular weight species were active [77]. The possibility of LO dimmerization can be an expla- nation of the allosteric mechanism which is character- istic of majority of LOs. Conclusion 5-LO can catalyze two reactions: the oxidation of AA and formation of leukotriene A4. It was estab- lished that the human 5-LO can form dimmers and it explains that one monomer catalyzes the formation of 5-HPETE and transmits to the second monomer to form leukotriene A4 [75]. The phenomenon of LO dimmerization can explain the ability of 5-LO to catalyze two reactions and an allosteric behavior of lipoxygenases. The LOX tendency to form dimmers, where two noncovalently linked enzyme molecules might work in unison [45], is a basis to understand- ing allosteric interactions. The dimmerization phe- nomenon seems to give a ground for explanation of the number of binding sites on the protein surface and the PL ability to decrease or increase this number, which leads to changing the LO cooperativity with the substrate. Lipid nature of the compounds can in- fl uence the allosteric properties of LOs changing the enzyme activity and level of its specifi c products. This leads to regulation of LO activity via infl uence on the protein-lipid interactions of C2 domain with the membrane, changes in the enzyme affi nity, the LOs translocation from cytosole to the membrane surface, allosteric mechanism, and increasing selec- tivity towards the substrate type. The lipophilicity rate of effectors can change the regulatory infl uence of active compound on the enzyme activity. To ex- plain the LO catalysis, it is necessary to consider the enzyme microenvironment and infl uence on the 170 T. D. Skaterna, V. M. Kopich, G. I. Kharitonenko, O. V. Kharchenko range of LO products as well as a conformational state of the protein molecule. Lipid microenviron- ment is essential for the LO activity. This should be considered in the regulation of a level of bioactive lipoxygenases products because of the possibility of an inhibitor molecule to be converted by the enzyme at contacting with PL in the cell. Acknowledgement The authors acknowledge Tetyana Odarich, MD for helpful assistance. REFERENCES 1. Rakonjac M, Fischer L, Provost P, Werz O, Steinhilber D, Samuelsson B, Rådmark O. Coactosin-like protein supports 5-lipoxygenase enzyme activity and up-regulates leukot- riene A4 production. Proc Natl Acad Sci U S A. 2006; 103(35): 13150–5. 2. Miller DK, Gillard JW, Vickers PJ, Sadowski S, Léveillé C, Mancini JA, Charleson P, Dixon RA, Ford-Hutchinson AW, Fortin R, et al. Identifi cation and isolation of a membrane protein necessary for leukotriene production. Nature. 1990; 343(6255):278–81. 3. Kuhn H, Banthiya S, van Leyen K. Mammalian lipoxygen- ases and their biological relevance. Biochim Biophys Acta. 2015;1851(4):308–330. 4. Rеdmark O, Werz O, Steinhilber D, Samuelsson B. 5-Lipox- ygenase, a key enzyme for leukotriene biosynthesis in health and disease. Biochim Biophys Acta. 2015;1851(4):331–339. 5. Grechkin AN, Tarchevsky IA. The lipoxygenase signaling sys- tem. Russian Journal of Plant Physiology 1999; 46(1): 114–23. 6. Feussner I, Wasternack C. The lipoxygenase pathway. Annu Rev Plant Biol. 2002;53:275–97. 7. Droillard MJ, Rouet-Mayer MA, Bureau JM, Lauriere C. Membrane-associated and soluble lipoxygenase isoforms in tomato pericarp (characterization and involvement in mem- brane alterations). Plant Physiol. 1993;103(4):1211–1219. 8. Braidot E, Petrussa E, Micolini S, Tubaro F, Vianello A, Macrм F. Biochemical and immunochemical evidences for the presence of lipoxygenase in plant mitochondria. J Exp Bot. 2004;55(403):1655–62. 9. Boyd RS, Jukes-Jones R, Walewska R, Brown D, Dyer MJ, Cain K. Protein profi ling of plasma membranes defi nes ab- errant signaling pathways in mantle cell lymphoma. Mol Cell Proteomics. 2009;8(7):1501–15. 10. Peters-Golden M, Brock TG. 5-lipoxygenase and FLAP. Pros- taglandins Leukot Essent Fatty Acids. 2003;69(2–3):99–109. 11. Soberman RJ, Christmas P. The organization and consequ- ences of eicosanoid signaling. J Clin Invest. 2003;111(8): 1107–13. 12. Dixon RA, Diehl RE, Opas E, Rands E, Vickers PJ, Evans JF, Gillard JW, Miller DK. Requirement of a 5-lipoxygen- ase-activating protein for leukotriene synthesis. Nature. 1990; 343(6255):282–4. 13. Jakobsson PJ, Morgenstern R, Mancini J, Ford-Hutchinson A, Persson B. Membrane-associated proteins in eicosanoid and glutathione metabolism (MAPEG). A widespread pro- tein superfamily. Am J Respir Crit Care Med. 2000;161(2 Pt 2):S20–4. 14. Esser J, Gehrmann U, D'Alexandri FL, Hidalgo-Estévez AM, Wheelock CE, Scheynius A, Gabrielsson S, Rådmark O. Exo- somes from human macrophages and dendritic cells contain enzymes for leukotriene biosynthesis and promote granulo- cyte migration. J Allergy Clin Immunol. 2010;126(5):1032– 40, 1040.e1–4. 15. Battu S, Moalic S, Rigaud M, Beneytout JL. Linoleic acid peroxidation by Solanum tuberosum lipoxygenase was acti- vated in the presence of human 5-lipoxygenase-activating protein. Biochim Biophys Acta. 1998;1392(2-3):340–50. 16. Noguchi M, Miyano M, Kuhara S, Matsumoto T, Noma M. Interfacial kinetic reaction of human 5-lipoxygenase. Eur J Biochem. 1994;222(2):285–92. 17. Medkova M, Cho W. Interplay of C1 and C2 domains of protein kinase C-alpha in its membrane binding and activa- tion. J Biol Chem. 1999;274(28):19852–61. 18. Pande AH, Moe D, Nemec KN, Qin S, Tan S, Tatulian SA. Modulation of human 5-lipoxygenase activity by membrane lipids. Biochemistry. 2004;43(46):14653–66. 19. Stahelin RV, Rafter JD, Das S, Cho W. The molecular basis of differential subcellular localization of C2 domains of protein kinase C-alpha and group IVa cytosolic phospholi- pase A2. J Biol Chem. 2003;278(14):12452–60. 20. Jose Lopez-Andreo M, Gomez-Fernandez JC, Corbalan- Garcia S. The simultaneous production of phosphatidic acid and diacylglycerol is essential for the translocation of pro- tein kinase Cepsilon to the plasma membrane in RBL-2H3 cells. Mol Biol Cell. 2003;14(12):4885–95. 21. Schrцder M, Hдfner AK, Hofmann B, Rådmark O, Tumulka F, Abele R, Dцtsch V, Steinhilber D. Stabilisation and charac- terisation of the isolated regulatory domain of human 5-li- po xygenase. Biochim Biophys Acta. 2014;1842(10):1538–47. 22. Rеdmark O, Werz O, Steinhilber D, Samuelsson B. 5-Lipox- ygenase, a key enzyme for leukotriene biosynthesis in health and disease. Biochim Biophys Acta. 2015;1851(4):331–339. 23. Rizo J, Sьdhof TC. C2-domains, structure and function of a universal Ca2+-binding domain. J Biol Chem. 1998;273(26): 15879–82. 24. Kulkarni S, Das S, Funk CD, Murray D, Cho W. Molecular basis of the specifi c subcellular localization of the C2-like do main of 5-lipoxygenase. J Biol Chem. 2002;277(15): 13167–74. 25. Pande AH, Qin S, Tatulian SA. Membrane fl uidity is a key modulator of membrane binding, insertion, and activity of 5-lipoxygenase. Biophys J. 2005;88(6):4084–94. 171 Lipoxygenase regulation in vivo and in vitro by lipid compounds 26. Walther M, Wiesner R, Kuhn H. Investigations into calcium- dependent membrane association of 15-lipoxygenase-1. Me- chanistic roles of surface-exposed hydrophobic amino acids and calcium. J Biol Chem. 2004;279(5):3717–25. 27. Butovich IA, Parshikova TV, Babenko VM, Livarchuk LV, Kharchenko OV, Kukhar VP. Regulatory role of phospholip- ids in the oxidation of linoleic acid by 5-lipoxygenase. Biol Membrane 1992; 9(6): 611–6. 28. Butovich IA, Kharchenko OV, Babenko VM. On the interfa- cial phenomena in lipoxygenase catalysis. Adv Prostaglandin Thromboxane Leukot Res. 1995;23:159–61. 29. Began G, Sudharshan E, Appu Rao AG. Change in the posi- tional specifi city of lipoxygenase 1 due to insertion of fatty acids into phosphatidylcholine deoxycholate mixed mi- celles. Biochemistry. 1999;38(42):13920–7. 30. Rouzer CA, Samuelsson B. On the nature of the 5-lipoxyge- nase reaction in human leukocytes: enzyme purifi cation and requirement for multiple stimulatory factors. Proc Natl Acad Sci U S A. 1985;82(18):6040–4. 31. Sud’ina GF, Brock TG, Pushkareva MA, Galkina SI, Turutin DV, Peters-Golden M, Ullrich V. Sulphatides trigger poly- morphonuclear granulocyte spreading on collagen-coated sur faces and inhibit subsequent activation of 5-lipoxygen- ase. Biochem J. 2001;359(Pt 3):621–9. 32. Hurnig C, Albert D, Fischer L, Hцrnig M, Rеdmark O, Ste- inhilber D, Werz O. 1-Oleoyl-2-acetylglycerol stimulates 5-li- poxygenase activity via a putative (phospho)lipid binding site within the N-terminal C2-like domain. J Biol Chem. 2005;280(29):26913–21. 33. Aleksandrov DA, Zagryagskaya AN, Pushkareva MA, Ba- chschmid M, Peters-Golden M, Werz O, Steinhilber D, Su- d’ina GF. Cholesterol and its anionic derivatives inhibit 5-li- poxygenase activation in polymorphonuclear leukocytes and MonoMac6 cells. FEBS J. 2006;273(3):548–57. 34. Flamand N, Lefebvre J, Surette ME, Picard S, Borgeat P. Arachidonic acid regulates the translocation of 5-lipoxyge- nase to the nuclear membranes in human neutrophils. J Biol Chem. 2006;281(1):129–36. 35. Rеdmark O, Samuelsson B. Regulation of 5-lipoxygena se en zyme activity. Biochem Biophys Res Commun. 2005;338 (1):102–10. 36. Awwad K, Steinbrink SD, Frцmel T, Lill N, Isaak J, Hдf ner AK, Roos J, Hofmann B, Heide H, Geisslinger G, Steinhilber D, Freeman BA, Maier TJ, Fleming I. Electrophilic fatty acid species inhibit 5-lipoxygenase and attenuate sepsis-induced pulmonary infl ammation. Antioxid Redox Signal. 2014;20 (17):2667–80. 37. Riendeau D, Falgueyret JP, Nathaniel DJ, Rokach J, Ueda N, Yamamoto S. Sensitivity of immunoaffi nity-purifi ed por- cine 5-lipoxygenase to inhibitors and activating lipid hydro- peroxides. Biochem Pharmacol. 1989;38(14):2313–21. 38. Rouzer CA, Samuelsson B. The importance of hydroperoxi- de activation for the detection and assay of mammalian 5-li- poxygenase. FEBS Lett. 1986;204(2):293–6. 39. Wecksler AT, Garcia NK, Holman TR. Substrate specifi city effects of lipoxygenase products and inhibitors on soybean lipoxygenase-1. Bioorg Med Chem. 2009;17(18):6534–9. 40. Kilty I, Logan A, Vickers PJ. Differential characteristics of human 15-lipoxygenase isozymes and a novel splice variant of 15S-lipoxygenase. Eur J Biochem. 1999;266(1):83–93. 41. Wecksler AT, Kenyon V, Garcia NK, Deschamps JD, van der Donk WA, Holman TR. Kinetic and structural investigations of the allosteric site in human epithelial 15-lipoxygenase-2. Biochemistry. 2009;48(36):8721–30. 42. (60) Armstrong MM, Diaz G, Kenyon V, Holman TR. In hi bi to ry and mechanistic investigations of oxo-lipids with human lipox- ygenase isozymes. Bioorg Med Chem. 2014;22(15): 4293–7. 43. Mogul R, Johansen E, Holman TR. Oleyl sulfate reveals al- losteric inhibition of soybean lipoxygenase-1 and human 15-lipoxygenase. Biochemistry. 2000;39(16):4801–7. 44. Wecksler AT, Kenyon V, Deschamps JD, Holman TR. Sub- strate specifi city changes for human reticulocyte and epithe- lial 15-lipoxygenases reveal allosteric product regulation. Biochemistry. 2008;47(28):7364–75. 45. Ivanov I, Shang W, Toledo L, Masgrau L, Svergun DI, Ste- hling S, Gуmez H, Di Venere A, Mei G, Lluch JM, Skrzypczak- Jankun E, Gonzбlez-Lafont A, Kьhn H. Ligand-induced formation of transient dimers of mammalian 12/15-lipoxy- genase: a key to allosteric behavior of this class of enzymes? Proteins. 2012;80(3):703–12. 46. Butovich IA, Kharchenko OV. [Role of phospholipids in the regulation of activity of porcine leukocyte 12-lipoxygen- ase]. Ukr Biokhim Zh (1999). 1999;71(1):38–43. 47. Wecksler AT, Jacquot C, van der Donk WA, Holman TR. Me chanistic investigations of human reticulocyte 15- and pla telet 12-lipoxygenases with arachidonic acid. Bio che- mis try. 2009;48(26):6259–67. 48. Butovich IA, Babenko VM, Livarchuk LV, Mogilevich TV, Kukhar VP. Activation of the oxidation of linoleic acid by 5-lipoxygenase from potato tubers, induced by phosphatidic acid. Biol Membrane 1991; 56(6): 744–7. 49. Butovich IA, Tsys EV, Mogilevich TV, Kukhar VP. Infl uence of physicochemical factors on lipoxygenase oxidation of linoleic acid. Bioorg Chem. 1991; 17(9): 1273–80. 50. Butovich IA, Kharchenko OV, Bondarenko LB, Babenko VM, Livarchuk LV. Linoleyl hydroxamate as 5-lipoxygenase inhibitor. Biochemistry (Moscow) 1994; 59(6): 597–600. 51. Kharchenko OV, Cernjuk VN, Butovich IA. [Inhibitory ef- fect of linoleyl-hydroxamic acid on the oxidation of linoleic acid by 12-lipoxygenase from porcine leukocytes]. Ukr Biokhim Zh (1999). 1999;71(1):33–7. 52. Butovich IA, Lukyanova SM. Inhibition of lipoxygenases and cyclooxygenases by linoleyl hydroxamic acid: compa- rative in vitro studies. J Lipid Res. 2008;49(6):1284–94. 53. May C, Huhne M, Gnau P, Schwennesen K, Kindl H. The N-terminal beta-barrel structure of lipid body lipoxygenase mediates its binding to liposomes and lipid bodies. Eur J Biochem. 2000;267(4):1100–9. 172 T. D. Skaterna, V. M. Kopich, G. I. Kharitonenko, O. V. Kharchenko 54. Zhang YY, Hammarberg T, Radmark O, Samuelsson B, Ng CF, Funk CD, Loscalzo J. Analysis of a nucleotide-binding site of 5-lipoxygenase by affi nity labelling: binding charac- teristics and amino acid sequences. Biochem J. 2000;351 Pt 3:697–707. 55. Chen XS, Funk CD. The N-terminal «beta-barrel» domain of 5-lipoxygenase is essential for nuclear membrane trans- location. J Biol Chem. 2001;276(1):811–8. 56. Albert D, Pergola C, Koeberle A, Dodt G, Steinhilber D, Werz O. The role of diacylglyceride generation by phos- pholipase D and phosphatidic acid phosphatase in the acti- vation of 5-lipoxygenase in polymorphonuclear leukocytes. J Leukoc Biol. 2008;83(4):1019–27. 57. Boden SE, Schweizer S, Bertsche T, Dьfer M, Drews G, Safayhi H. Stimulation of leukotriene synthesis in intact po- ly morphonuclear cells by the 5-lipoxygenase inhibitor 3-oxo- tirucallic acid. Mol Pharmacol. 2001;60(2):267–73. 58. Lуpez-Nicolбs R, Lуpez-Andreo MJ, Marнn-Vicente C, Gу- mez-Fernбndez JC, Corbalбn-Garcнa S. Molecular mecha- nisms of PKCalpha localization and activation by arachido- nic acid. The C2 domain also plays a role. J Mol Biol. 2006; 357(4):1105–20. 59. Walther M, Anton M, Wiedmann M, Fletterick R, Kuhn H. The N-terminal domain of the reticulocyte-type 15-lipoxy- genase is not essential for enzymatic activity but contains determinants for membrane binding. J Biol Chem. 2002;277 (30):27360–6. 60. Butovich I, Bridnya V, Kukhar V. Linoleate-hydroxamic acid: a suicide inhibitor of lipoxygenase. Biochemistry-Moscow 1990; 55(7): 908–12. 61. Skaterna TD, Kopich VM, Tserniuk VM, Kharchenko OV. [Modeling of linoleyl hydroxamic acid infl uence on lipoxy- genases in vitro]. Ukr Biokhim Zh (1999). 2009;81(6):59–69. 62. Vovk AI, Kharchenko OV, Kharitonenko AI, Kukhar’ VP, Ba- biĭ LB, Kazachkov MG, Mel’nik AK, Khil’chevskiĭ AN. [Hy- drophobic nitroxyl radicals inhibit linoleyl alcohol oxida- tion by 5-lipoxygenase]. Bioorg Khim. 2004;30(4):436–40. 63. Kharytonenko HI, Skaterna TD, Mel’nyk AK, Babiĭ LV, Kharchenko OV. [Interaction between 5-lipoxygenase and allosteric effector-sodium dodecyl sulfate]. Ukr Biokhim Zh (1999). 2008;80(3):31–9. 64. Kooijman EE, Chupin V, de Kruijff B, Burger KN. Modu la- tion of membrane curvature by phosphatidic acid and lyso- phosphatidic acid. Traffi c. 2003;4(3):162–74. 65. Joshi N, Hoobler EK, Perry S, Diaz G, Fox B, Holman TR. Kinetic and structural investigations into the allosteric and pH effect on the substrate specifi city of human epithelial 15-lipoxygenase-2. Biochemistry. 2013;52(45):8026–35. 66. Skaterna TD, Kharytonenko HI, Kharchenko OV. [Thermoi- n a ctivation of potato 5-lipoxygenase and effect of phospha- tidic acid on activation energy of denaturation]. Ukr Biokhim Zh (1999). 2010;82(2):22–8. 67. Butovich IA, Soloshonok VA, Solodenko VA, Kukhar’ VP. [Ac tivation of 5-lipoxygenase by lipophilic n-alkyl-contain- ing acids-an allosteric process]. Bioorg Khim. 1990;16(2): 270–1. 68. Sailer ER, Schweizer S, Boden SE, Ammon HP, Safayhi H. Characterization of an acetyl-11-keto-beta-boswellic acid and arachidonate-binding regulatory site of 5-lipoxygenase us- ing photoaffi nity labeling. Eur J Biochem. 1998;256(2):364–8. 69. Kharchenko OV, Kulinichenko HI, Butovych IA. [Kinetic mechanisms of linoleic acid oxidation by 5-lipoxygenase from Solanum tuberosum L]. Ukr Biokhim Zh (1999). 1999; 71(4):40–4. 70. Ruddat VC, Whitman S, Holman TR, Bernasconi CF. Stop- ped-fl ow kinetic investigations of the activation of soybean lipoxygenase-1 and the infl uence of inhibitors on the allos- teric site. Biochemistry. 2003;42(14):4172–8. 71. Butovich IA, Soloshonok VA, Kukhar VP. The unusual ac- tion of (R,S)-2-hydroxy-2-trifl uoromethyl-trans-n-octadec- 4-enoic acid on 5-lipoxygenase from potato tubers. Eur J Biochem. 1991;199(1):153–5. 72. Whitman S, Gezginci M, Timmermann BN, Holman TR. Stru- cture-activity relationship studies of nordihydroguaiaretic acid inhibitors toward soybean, 12-human, and 15-human lipoxygenase. J Med Chem. 2002;45(12):2659–61. 73. Kharitonenko GI, Kharchenko OV. Phosphatidylcholine and phosphatidylinositol are allosteric regulators of 5-lipox- ygenase from potato tubers. Biopolym Cell. 2008; 24(3): 254–9. 74. Skaterna TD, Kharchenko OV. [Effect of phosphatidic acid on the reaction of linoleic acid oxidation by 5-lipooxygenase from potatoes]. Ukr Biokhim Zh (1999). 2008;80(3):21–30. 75. Hufner AK, Cernescu M, Hofmann B, Ermisch M, Hцrnig M, Metzner J, Schneider G, Brutschy B, Steinhilber D. Dime ri- za tion of human 5-lipoxygenase. Biol Chem. 2011;392(12): 1097–111. 76. Shang W, Ivanov I, Svergun DI, Borbulevych OY, Aleem AM, Stehling S, Jankun J, Kühn H, Skrzypczak-Jankun E. Probing dimerization and structural fl exibility of mammali- an lipoxygenases by small-angle X-ray scattering. J Mol Biol. 2011;409(4):654-68. 77. Parker CW, Aykent S. Calcium stimulation of the 5-lipoxy- genase from RBL-1 cells. Biochem Biophys Res Commun. 1982;109(3):1011–6. Регуляція ліпоксигеназ in vivo та in vitro сполуками ліпідної природи Т. Д. Скатерна, В. М. Копіч, Г. І. Харитоненко, О. В. Харченко Ліпоксигенази (ЛО) відомі як одні з ферментів перекисного окислення ліпідів. Більшість ЛО є розчинними ферментами та характеризуються аффіністю до мембран. Транслокація ферменту з цитозолю на мембранну поверхню одна з стадій регуляції рівня продуктів ліпоксигеназного каталізу у кліти- ні. Сорбція на мембранну поверхню описана для більшості 173 Lipoxygenase regulation in vivo and in vitro by lipid compounds ЛОз з рослинних та тваринних джерел. Даний огляд пред- ставляє дані по регуляції ЛОз активності природніми та хі- мічно модифікованими речовинами ліпідної природи. Здат- ність ліпідів регулювати ЛО активність може здійснюватись через: білок-ліпідні взаємодії C2 домену з мембраною, змі- ну аффінності ферменту, транслокацію ЛОз, алостеричну регуляцію, збільшення селективності до субстрату. Ре гу ля- торний вплив активної сполуки на ферментативну актив- ність залежить від рівня ліпофільності ефекторів. При по- ясненні ліпоксигеназного каталізу необхідно враховувати вплив мікрооточення ферменту на рівень ЛО. Ключов і слова: ліпоксигеназа, алостерична регуляція, фосфоліпіди, інгібування, активація Регуляция липоксигеназ in vivo и in vitro соединениями липидной природы Т. Д. Скатерная, В. Н. Копич, А. И. Харитоненко, О. В. Харченко Липоксигеназы (ЛО) известны как одни из ферментов пере- кисного окисления липидов. Большинство ЛО растворимые ферменты и характеризуются аффиностью к мембранам. Транслокация фермента из цитозоля на мембранную повер- хность одна из стадий регуляции уровня продуктов липок- сигеназного катализа в клетке. Сорбция на мембранную поверхность описана для большинства ЛОз из раститель- ных и животных источников. Данный обзор представляет данные по регуляции ЛО активности природными и хими- чески модифицированными соединениями липидной при- роды. Возможность липидов регулировать ЛО активность может осуществляться через: белок-липидные взаимодейс- твия C2 домена с мембраной, изменение аффинности фер- мента, транслокацию ЛОз, аллостерическую регуляцию, селективность к типу субстрата. Регуляторное влияние ак- тивного соединения на ферментативную активность зави- сит от уровня липофильности еффекторов. При объяснении липоксигеназного катализа необходимо учитывать влияние микроокружения фермента на уровень ЛО продуктов. Ключевые слова: липоксигеназа, аллостерическая ре- гуляция, фосфолипиды, ингибирование, активация. Received 02.06.2015