Symmetries of automata

For a given reachable automaton A, we prove that the (state-) endomorphism monoid End(A) divides its characteristic monoid M(A). Hence so does its (state-)automorphism group Aut(A), and, for finite A, Aut(A) is a homomorphic image of a subgroup of the characteristic monoid. It follows that in the pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2015
Hauptverfasser: Egri-Nagy, A., Nehaniv, C.L.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2015
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/152786
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Symmetries of automata / A. Egri-Nagy, C.L. Nehaniv // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 1. — С. 48-57. — Бібліогр.: 7 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-152786
record_format dspace
spelling Egri-Nagy, A.
Nehaniv, C.L.
2019-06-12T20:52:55Z
2019-06-12T20:52:55Z
2015
Symmetries of automata / A. Egri-Nagy, C.L. Nehaniv // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 1. — С. 48-57. — Бібліогр.: 7 назв. — англ.
1726-3255
2010 MSC:20B25, 20E22, 20M20, 20M35, 68Q70.
https://nasplib.isofts.kiev.ua/handle/123456789/152786
For a given reachable automaton A, we prove that the (state-) endomorphism monoid End(A) divides its characteristic monoid M(A). Hence so does its (state-)automorphism group Aut(A), and, for finite A, Aut(A) is a homomorphic image of a subgroup of the characteristic monoid. It follows that in the presence of a (state-) automorphism group G of A, a finite automaton A (and its transformation monoid) always has a decomposition as a divisor of the wreath product of two transformation semigroups whose semigroups are divisors of M(A), namely the symmetry group G and the quotient of M(A) induced by the action of G. Moreover, this division is an embedding if M(A) is transitive on states of A. For more general automorphisms, which may be non-trivial on input letters, counterexamples show that they need not be induced by any corresponding characteristic monoid element.
This work was in part supported by the EU FP6 Project OPAALS (Contract No IST-034824) and the FP7 EU Project BIOMICS (contract number CNECT-318202). This support is gratefully acknowledged.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Symmetries of automata
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Symmetries of automata
spellingShingle Symmetries of automata
Egri-Nagy, A.
Nehaniv, C.L.
title_short Symmetries of automata
title_full Symmetries of automata
title_fullStr Symmetries of automata
title_full_unstemmed Symmetries of automata
title_sort symmetries of automata
author Egri-Nagy, A.
Nehaniv, C.L.
author_facet Egri-Nagy, A.
Nehaniv, C.L.
publishDate 2015
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description For a given reachable automaton A, we prove that the (state-) endomorphism monoid End(A) divides its characteristic monoid M(A). Hence so does its (state-)automorphism group Aut(A), and, for finite A, Aut(A) is a homomorphic image of a subgroup of the characteristic monoid. It follows that in the presence of a (state-) automorphism group G of A, a finite automaton A (and its transformation monoid) always has a decomposition as a divisor of the wreath product of two transformation semigroups whose semigroups are divisors of M(A), namely the symmetry group G and the quotient of M(A) induced by the action of G. Moreover, this division is an embedding if M(A) is transitive on states of A. For more general automorphisms, which may be non-trivial on input letters, counterexamples show that they need not be induced by any corresponding characteristic monoid element.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/152786
citation_txt Symmetries of automata / A. Egri-Nagy, C.L. Nehaniv // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 1. — С. 48-57. — Бібліогр.: 7 назв. — англ.
work_keys_str_mv AT egrinagya symmetriesofautomata
AT nehanivcl symmetriesofautomata
first_indexed 2025-12-07T16:32:42Z
last_indexed 2025-12-07T16:32:42Z
_version_ 1850867882145087488