On subgroups of finite exponent in groups

We investigate properties of groups with subgroups of finite exponent and prove that a non-perfect group G of infinite exponent with all proper subgroups of finite exponent has the following properties: (1) G is an indecomposable p-group, (2) if the derived subgroup G′ is non-perfect, then G/...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2015
1. Verfasser: Artemovych, O.D.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2015
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/152792
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On subgroups of finite exponent in groups / O.D. Artemovych // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 1. — С. 1-7. — Бібліогр.: 13 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-152792
record_format dspace
spelling Artemovych, O.D.
2019-06-12T20:59:40Z
2019-06-12T20:59:40Z
2015
On subgroups of finite exponent in groups / O.D. Artemovych // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 1. — С. 1-7. — Бібліогр.: 13 назв. — англ.
1726-3255
2010 MSC:20F50, 20F26, 20E26.
https://nasplib.isofts.kiev.ua/handle/123456789/152792
We investigate properties of groups with subgroups of finite exponent and prove that a non-perfect group G of infinite exponent with all proper subgroups of finite exponent has the following properties: (1) G is an indecomposable p-group, (2) if the derived subgroup G′ is non-perfect, then G/G′′ is a group of Heineken-Mohamed type. We also prove that a non-perfect indecomposable group G with the non-perfect locally nilpotent derived subgroup G′ is a locally finite p-group.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
On subgroups of finite exponent in groups
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On subgroups of finite exponent in groups
spellingShingle On subgroups of finite exponent in groups
Artemovych, O.D.
title_short On subgroups of finite exponent in groups
title_full On subgroups of finite exponent in groups
title_fullStr On subgroups of finite exponent in groups
title_full_unstemmed On subgroups of finite exponent in groups
title_sort on subgroups of finite exponent in groups
author Artemovych, O.D.
author_facet Artemovych, O.D.
publishDate 2015
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description We investigate properties of groups with subgroups of finite exponent and prove that a non-perfect group G of infinite exponent with all proper subgroups of finite exponent has the following properties: (1) G is an indecomposable p-group, (2) if the derived subgroup G′ is non-perfect, then G/G′′ is a group of Heineken-Mohamed type. We also prove that a non-perfect indecomposable group G with the non-perfect locally nilpotent derived subgroup G′ is a locally finite p-group.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/152792
citation_txt On subgroups of finite exponent in groups / O.D. Artemovych // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 1. — С. 1-7. — Бібліогр.: 13 назв. — англ.
work_keys_str_mv AT artemovychod onsubgroupsoffiniteexponentingroups
first_indexed 2025-12-02T10:29:30Z
last_indexed 2025-12-02T10:29:30Z
_version_ 1850862274681503744