Electrocaloric effect in KH₂PO₄ family crystals

The proton ordering model for the KH₂PO₄ type ferroelectrics is modified by taking into account the dependence of the effective dipole moments on the proton ordering parameter. Within the four-particle cluster approximation we calculate the crystal polarization and explore the electrocaloric effect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Condensed Matter Physics
Datum:2014
Hauptverfasser: Vdovych, A.S., Moina, A.P., Levitskii, R.R., Zachek, I.R.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут фізики конденсованих систем НАН України 2014
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/152892
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Electrocaloric effect in KH₂PO₄ family crystals / A.S. Vdovych, A.P. Moina, R.R. Levitskii, I.R. Zachek // Condensed Matter Physics. — 2014. — Т. 17, № 4. — С. 43703: 1–10 — Бібліогр.: 23 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-152892
record_format dspace
spelling Vdovych, A.S.
Moina, A.P.
Levitskii, R.R.
Zachek, I.R.
2019-06-13T09:50:42Z
2019-06-13T09:50:42Z
2014
Electrocaloric effect in KH₂PO₄ family crystals / A.S. Vdovych, A.P. Moina, R.R. Levitskii, I.R. Zachek // Condensed Matter Physics. — 2014. — Т. 17, № 4. — С. 43703: 1–10 — Бібліогр.: 23 назв. — англ.
1607-324X
arXiv:1502.02399
DOI:10.5488/CMP.17.43703
PACS: 77.84.Fa, 77.70.+a
https://nasplib.isofts.kiev.ua/handle/123456789/152892
The proton ordering model for the KH₂PO₄ type ferroelectrics is modified by taking into account the dependence of the effective dipole moments on the proton ordering parameter. Within the four-particle cluster approximation we calculate the crystal polarization and explore the electrocaloric effect. Smearing of the ferroelectric phase transition by a longitudinal electric field is described. A good agreement with experiment is obtained.
В моделi протонного впорядкування для кристалiв типу KH₂PO₄ враховано залежнiсть ефективних дипольних моментiв вiд параметра протонного впорядкування. В наближеннi чотиричастинкового кластера розраховано поляризацiю кристалiв та дослiджено електрокалоричний ефект у них. Описано розмивання сегнетоелектричного фазового переходу поздовжним електричним полем. Отримано добре узгодження з експериментальними даними.
en
Інститут фізики конденсованих систем НАН України
Condensed Matter Physics
Electrocaloric effect in KH₂PO₄ family crystals
Електрокалоричний ефект у кристалах типу KH₂PO₄
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Electrocaloric effect in KH₂PO₄ family crystals
spellingShingle Electrocaloric effect in KH₂PO₄ family crystals
Vdovych, A.S.
Moina, A.P.
Levitskii, R.R.
Zachek, I.R.
title_short Electrocaloric effect in KH₂PO₄ family crystals
title_full Electrocaloric effect in KH₂PO₄ family crystals
title_fullStr Electrocaloric effect in KH₂PO₄ family crystals
title_full_unstemmed Electrocaloric effect in KH₂PO₄ family crystals
title_sort electrocaloric effect in kh₂po₄ family crystals
author Vdovych, A.S.
Moina, A.P.
Levitskii, R.R.
Zachek, I.R.
author_facet Vdovych, A.S.
Moina, A.P.
Levitskii, R.R.
Zachek, I.R.
publishDate 2014
language English
container_title Condensed Matter Physics
publisher Інститут фізики конденсованих систем НАН України
format Article
title_alt Електрокалоричний ефект у кристалах типу KH₂PO₄
description The proton ordering model for the KH₂PO₄ type ferroelectrics is modified by taking into account the dependence of the effective dipole moments on the proton ordering parameter. Within the four-particle cluster approximation we calculate the crystal polarization and explore the electrocaloric effect. Smearing of the ferroelectric phase transition by a longitudinal electric field is described. A good agreement with experiment is obtained. В моделi протонного впорядкування для кристалiв типу KH₂PO₄ враховано залежнiсть ефективних дипольних моментiв вiд параметра протонного впорядкування. В наближеннi чотиричастинкового кластера розраховано поляризацiю кристалiв та дослiджено електрокалоричний ефект у них. Описано розмивання сегнетоелектричного фазового переходу поздовжним електричним полем. Отримано добре узгодження з експериментальними даними.
issn 1607-324X
url https://nasplib.isofts.kiev.ua/handle/123456789/152892
citation_txt Electrocaloric effect in KH₂PO₄ family crystals / A.S. Vdovych, A.P. Moina, R.R. Levitskii, I.R. Zachek // Condensed Matter Physics. — 2014. — Т. 17, № 4. — С. 43703: 1–10 — Бібліогр.: 23 назв. — англ.
work_keys_str_mv AT vdovychas electrocaloriceffectinkh2po4familycrystals
AT moinaap electrocaloriceffectinkh2po4familycrystals
AT levitskiirr electrocaloriceffectinkh2po4familycrystals
AT zachekir electrocaloriceffectinkh2po4familycrystals
AT vdovychas elektrokaloričniiefektukristalahtipukh2po4
AT moinaap elektrokaloričniiefektukristalahtipukh2po4
AT levitskiirr elektrokaloričniiefektukristalahtipukh2po4
AT zachekir elektrokaloričniiefektukristalahtipukh2po4
first_indexed 2025-11-25T23:08:43Z
last_indexed 2025-11-25T23:08:43Z
_version_ 1850578867210682368
fulltext Condensed Matter Physics, 2014, Vol. 17, No 4, 43703: 1–10 DOI: 10.5488/CMP.17.43703 http://www.icmp.lviv.ua/journal Electrocaloric effect in KH2PO4 family crystals A.S. Vdovych1, A.P. Moina1, R.R. Levitskii1, I.R. Zachek2 1 Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii St., 79011 Lviv, Ukraine 2 National University “Lviv Polytechnic”, 12 Bandera St., 79013 Lviv, Ukraine Received May 31, 2014, in final form October 7, 2014 The proton ordering model for the KH2PO4 type ferroelectrics is modified by taking into account the depen- dence of the effective dipole moments on the proton ordering parameter. Within the four-particle cluster ap- proximation we calculate the crystal polarization and explore the electrocaloric effect. Smearing of the fer- roelectric phase transition by a longitudinal electric field is described. A good agreement with experiment is obtained. Key words: electrocaloric effect, KDP, cluster approximation, polarization PACS: 77.84.Fa, 77.70.+a 1. Introduction The electrocaloric (EC) effect is the change of temperature of a dielectric at an adiabatic change of the applied electric field. Research in this field is driven by a quest for materials that can be used for efficient, environment-friendly, and compact (on-chip) solid-state cooling devices. The current state of the art on the electrocaloric effect research for ferroelectrics is well summarized in [1, 2]. At the moment, the largest effect is observed in perovskite ferroelectrics. Thus, in [3] in the PbZr0.95Ti0.05O3 thin film with a thickness of 350 nm in a strong electric field (480 kV/cm) the obtained electrocaloric temperature change is ∆T = 12 K. Ab initio molecular dynamics calculations [4] predict ∆T ≈ 20 K in LiNbO3. In the hydrogen bonded ferroelectrics of the KH2PO4 (KDP) type, the electrocaloric effect was studied for relatively low fields only. Thus, it has been obtained that∆T ≈ 0.04 K at E ≈ 4 kV/cm [5], ∆T ≈ 1 K at E ≈ 12 kV/cm [6], and ∆T ≈ 0.25 K at Tc and E ≈ 1.2 kV/cm [7]. Theoretical calculations of the electrocaloric effect in KDP have been made in [8] within the Slater model [9] and in the paraelectric phase only. It is also known that the Slater model gives incorrect results in the ferroelectric phase, and more complicated versions of the proton ordering model are required for an adequate description of these crystals. Thus, the effect of electric field on the physical characteristics of the KDP type crystals, such as polarization, dielectric permittivity, piezoelectric coefficients, elastic con- stants, has been described within the proton ordering model with the piezoelectric coupling to the shear strain ε6 [10–12] and with proton tunneling [13] taken into account. However, these theories required, in particular, invoking two different values of the effective dipole moments for the paraelectric and fer- roelectric phase [10, 12]. This made impossible a correct description of the system behavior in the fields high enough to smear out the first order phase transition. There is an inner logical contradiction in the model: while no physical characteristic of a crystal should exhibit any discontinuity in the fields above the critical one, there is no smooth transition between the values of model parameters, rigidly set to be different for the two phases. In the present paper we suggest a way to remove this contradiction. Assuming that the difference between the dipole moments is caused by non-zero values of the order parameter, we modify the proton ordering model accordingly. The field dependences of polarization, smearing of the first order phase transition, and the electrocaloric effect are described. © A.S. Vdovych, A.P. Moina, R.R. Levitskii, I.R. Zachek, 2014 43703-1 http://dx.doi.org/10.5488/CMP.17.43703 http://www.icmp.lviv.ua/journal A.S. Vdovych et al. 2. Thermodynamic characteristics We consider the KDP type ferroelectrics in the presence of an external electric field E3 applied along the crystallographic axis c, inducing the strain ε6 and polarization P3. The total model Hamiltonian reads Ĥ = N Ĥ0 + Ĥs , (1) where N is the total number of primitive cells. The “seed” energy H0 corresponds to the sublattice of heavy ions and does not explicitly depend on the proton subsystem configuration. It is expressed in terms of the strain ε6 and electric field E3 and includes the elastic, piezoelectric, and dielectric contributions [11] Ĥ0 = v ( 1 2 cE0 66 ε 2 6 −e0 36E3ε6 − 1 2 χε0 33E 2 3 ) , (2) where v is the primitive cell volume; cE0 44 , e0 36 , χε0 33 are the “seed” elastic constant, piezoelectric coefficient, and dielectric susceptibility, respectively. The pseudospin part of the Hamiltonian reads Ĥs = 1 2 ∑ q f ,q ′ f ′ J f f ′ (qq ′ ) σq f 2 σq ′ f ′ 2 + Ĥsh+ ∑ q f 2ψ6ε6 σq f 2 − ∑ q f µ f E3 σq f 2 + ĤE . (3) Here, the first term describes the effective long-range interactions between protons, including also in- direct lattice-mediated interactions [14, 15]; σq f is the operator of the z-component of a pseudospin, corresponding to the proton on the f -th hydrogen bond ( f = 1, 2, 3, 4) in the q-th cell. Its eigenvalues σq f =±1 are assigned to two equilibrium positions of a proton on this bond. In (3), Ĥsh is the Hamiltonian of short-range interactions between protons, which includes terms lin- ear over the strain [11] Ĥsh = ∑ q { ( δs 8 ε6 + δ1 4 ε6 ) (σq1 +σq2 +σq3 +σq4) + ( δs 8 ε6 − δ1 4 ε6 ) (σq1σq2σq3 +σq1σq2σq4 +σq1σq3σq4 +σq2σq3σq4) + 1 4 (V +δaε6)(σq1σq2 +σq3σq4)+ 1 4 (V −δaε6)(σq2σq3 +σq4σq1) + U 4 (σq1σq3 +σq2σq4)+ Φ 16 σq1σq2σq3σq4 } . (4) Here, V =− 1 2 w1 , U = 1 2 w1 −ε , Φ= 4ε−8w +2w1 , and ε, w , w1 are the energies of proton configurations. The third term in (3) is a linear over the shear strain ε6 field due to the piezoelectric coupling;ψ6 is the deformational potential. The fourth term effectively describes the system interaction with the external electric field E3. Here, µ f is the effective dipole moment of the f -the hydrogen bond, and µ1 =µ2 = µ3 =µ4 =µ. The fifth term in (3) is introduced in the present paper for the first time. It takes into account the assumed dependence of the effective dipole moment on the order parameter (pseudospin mean value) ĤE =− ( 1 N ∑ q ′ f ′ σq ′ f ′ 2 )2 µ′E3 ∑ q f σq f 2 . (5) It is equivalent to a term proportional to P 3 3 E3 in a phenomenological thermodynamic potential. Note that the terms like P 2 3 E3 are not allowed because of the symmetry considerations, and we keep the Hamilto- nian to be linear in the field E3. 43703-2 Electrocaloric effect in KH2PO4 family crystals In view of the crystal structure of the KDP type ferroelectrics, the four-particle cluster approximation is most suitable for short-range interactions [15, 16]. Long-range interactions and the term ĤE are taken into account in the mean field approximation. Thus, ĤE ≈−12Nµ′E3η 2 4 ∑ f =1 σq f 2 +16Nµ′E3η 3 . (6) Combining the fourth term in (3) and the first term in (6), we obtain the following term in the Hamiltonian −(µ+12µ′η2)E3 ∑ q f σq f /2. Effectively, the term 12µ′η2 in (µ+12µ′η2) describes the jump of the dipole moment at the first order phase transition, its different values for the paraelectric and ferroelectric phase, and its smooth behavior in the fields above the critical one, when there is no jump of η. We can now use a single value of µ for both phases and remove the logical contradiction of the earlier theories, described in Introduction. Proceeding with the standard calculations of the cluster approximation [10, 12, 16], we obtain the following expression for the proton ordering parameter η= 〈σq1〉 = 〈σq2〉 = 〈σq3〉 = 〈σq4〉 = m D , where m = sinh(2z +βδsε6)+2b sinh(z −βδ1ε6), D = cosh(2z +βδsε6)+4b cosh(z −βδ1ε6)+2a coshβδaε6 +d , z = 1 2 ln 1+η 1−η +βνcη−βψ6ε6 + βµ 2 E3 +6βµ′η2E3 , a = e −βε , b = e −βw , d = e −βw1 ; 4νc = J11(0)+2J12(0)+ J13(0) is the eigenvalue of the long-range interactions matrix Fourier transform J f f ′ = ∑ Rq−Rq′ J f f ′(qq ′); β= 1/kBT . The thermodynamic potential is then obtained in the following form G = v 2 cE0 66 ε 2 6 − ve0 36ε6E3 − v 2 χε0 33E 2 3 +2νcη 2 +16µ′E3η 3 (7) + 2 β ln 2− 2 β ln ( 1−η2 ) − 2 β ln D − vσ6ε6 . Here, σ6 is the formally introduced shear stress conjugate to the strain ε6. In numerical calculations we put σ6 = 0. The condition of the thermodynamic potential minimum ( ∂G ∂ε6 ) T,E3 ,σ6 = 0 yields an equation for the strain ε6 σ6 = cE0 66 ε6 −e0 36E3 + 4ψ6 v η+ 2r vD . (8) In the same way, we derive the expressions for polarization P3 and molar entropy of the proton subsys- tem P3 = − 1 v ( ∂G ∂E3 ) T,σ6 = e0 36ε6 +χε0 33E3 +2 µ v η+8 µ′ v η3 , (9) S = − NA 2 ( ∂G ∂T ) E3,σ6 = R [ − ln 2+ ln(1−η2 )+ lnD +2T zT η+ M D ] . (10) Here, NA is the Avogadro number; R is the gas constant. The following notations are used: r =−δs Ms −δa Ma +δ1M1 , zT =− 1 kBT 2 (νcη−ψ6ε6 +6µ′η2E3), 43703-3 A.S. Vdovych et al. M = 4bβw cosh(z −βδ1ε6)+βw1d +2aβεcoshβδaε6 +βε6r, Ma = 2a sinhβδaε6, Ms = sinh(2z +βδsε6), M1 = 4b sinh(z −βδ1ε6). Expressions for dielectric susceptibilities, piezoelectric coefficients, and elastic constants derived [17] from equations (8), (9) are slightly different from the previous ones [10], where the dependence of the effective dipole moment on the order parameter was not taken into account. Numerical calculations, however, showed [17] that in zero electric field the difference is minor. The molar specific heat of the subsystem described by the Hamiltonian (1) is ∆Cσ = T ( ∂S ∂T ) σ = T (ST +SηηT +SεεT ). (11) Here, ST = ( ∂S ∂T ) P3,ε6 = R DT [ 2T zT (q6 −ηM)+N6 − M2 D ] , Sη = ( ∂S ∂η ) ε6 ,T = 2R D [ DT zT + (q6 −ηM)zη ] , Sε = ( ∂S ∂ε6 ) η,T = R DT [ −2 ( q6 −ηM ) ψ6 −λ+ M D r ] . (12) Notations introduced here are described in appendix. Then, the total specific heat is C =∆Cσ +Cregular . (13) Here, ∆Cσ is assumed to describe all the anomalies of the specific heat at the phase transition, whereas the regular background contribution to the specific heat, mostly from the lattice of heavy ions, is approx- imated by a linear temperature dependence Cregular =C0 +C1(T −Tc). (14) As will be discussed later, this linear approximation agrees with the experimental data. Finally, the electrocaloric temperature change is calculated using the known formula ∆T = E3 ∫ 0 T V C ( ∂P3 ∂T ) E dE3 , (15) where the pyroelectric coefficient is ( ∂P3 ∂T ) E = e0 36εT + 2(µ+12µ′η2) v ηT , (16) V = v NA/2 is the molar volume. 3. Numerical calculations To perform the numerical calculations we need to set the values of the following theory parameters: — the Slater energies ε, w , w1; — the parameter of the long-range interactions νc; — the effective dipole moment µ and the correction is due to proton ordering µ′; — the deformation potentials ψ6, δs , δa , δ1; 43703-4 Electrocaloric effect in KH2PO4 family crystals — the “seed” dielectric susceptibility χε0 33 , elastic constant cE0 66 , piezoelectric coefficient e0 36 ; — the parameters of the lattice specific heat C0 and C1. They are chosen, obviously, by fitting the theoretical thermodynamic characteristics to the experimental data, as described in [12]. The obtained optimum sets of the model parameters are given in table 1. To describe crystals with different deuteration levels, we use the mean crystal approximation, where the theory parameters are assumed to be linearly dependent on deuteron concentration (except for the parameter νc, for which a small deviation from the linear dependence is assumed, as it is chosen from the condition that the calculated transition temperature coincides with the experimental one, which is also slightly non-linear). The dependence of the energy levels and interparticle interaction constants on deuteration is caused by the corresponding geometrical changes in the crystal structure with deuteration (elongation of the hydrogen bonds, changes in the distance between the equilibrium positions of H or D on the bonds, changes in the lattice constants, etc). Table 1. The optimum sets of the model parameters for different crystals. As KD2PO4 we denoted K(H1−xDx )2PO4 with x = 0.89. T 0 c ε/kB w/kB νc/kB µ µ′ χ0 33 (K) (K) (K) (K) (10−30 C·m) (10−30 C·m) KH2PO4 122.22 56.00 430.0 17.55 5.6 −0.217 0.75 KD2PO4 211.73 85.33 730.4 39.26 6.8 −0.217 0.39 KH2AsO4 97 35.50 385.0 17.43 5.5 −0.033 0.7 KD2AsO4 162 56.00 690.0 31.72 7.3 −0.000 0.5 ψ6/kB δs /kB δa/kB δ1/kB cE0 66 e0 36 C0 C1 (K) (K) (K) (K) (109 N/m2) (C/m2) J/(mol K) J/(mol K2) KH2PO4 −150.00 82.00 −500.00 −400.0 7.00 0.0033 60 0.32 KD2PO4 −139.89 48.64 −1005.68 −400.0 6.39 0.0033 93 0.32 KH2AsO4 −170.00 130.00 −500.0 −500.0 7.50 0.01 60 0.32 KD2AsO4 −160.00 120.00 −800.0 −500.0 6.95 0.01 98 0.40 The primitive cell volume is taken to be v = 0.1946 · 10−21 cm3 for K(H1−xDx )2PO4 and v = 0.202 · 10−21 cm3 for K(H1−xDx )2AsO4, irrespectively of the deuteration. The energy w1 of proton configurations with four or zero protons near the given oxygen tetrahedron should be much higher than ε and w . Therefore, we take w1 =∞ (d = 0). As we have already mentioned, when the dependence of the effective dipole moment on the order parameter is taken into account, the agreement between the theory and experiment for most of the cal- culated dielectric, piezoelectric, elastic characteristics, and specific heat of the studied crystals in the absence of an external electric field is neither improved nor worsened (see [17]). However, the present model allows us to describe more consistently the smearing of the first order phase in high electric fields. The temperature dependence of the specific heat of KH2PO4 and KD2PO4 is shown in figure 1. The con- tribution ∆Cσ is essential in the transition region and satisfactorily describes the experimental anoma- lies. As one can see, the total specific heat above Tc can be well approximated by a linear temperature dependence, thus justifying the linear dependence of Cregular , given by equation (14). In figures 2 and 3 we plotted the temperature variation of polarization of K(H1−xDx )2PO4 in different fields. The agreement with experiment is better at x = 0.89 (and 0.84, see [17]) than at x = 0. We believe this is due to proton tunnelling, essential in non-deuterated samples, which is not included in our model. The field E3, which in these crystals is the field conjugate to the order parameter, induces non-zero polarization P3 above the transition point. Polarization has a jump at Tc, indicating the first order phase transition. With an increasing field, the polarization jump decreases, whereas the transition temperature Tc increases almost linearly. The corresponding ∂Tc/∂E3 slopes are 0.192 and 0.115 K cm/kV for x = 0 43703-5 A.S. Vdovych et al. 100 120 140 160 180 200 220 50 100 150 200 C p , J/(mol⋅K) T, K 1 1’ 2 2’ Figure 1. The temperature dependence of the molar specific heat of K(H1−xDx )2PO4 at x = 0.0 — ◦ [18], ä [19]; at x = 0.86 — △ [19]. Dashed lines 1’ and 2’: the theoretical results of [12]. and x = 0.89, respectively (c.f. 0.22 and 0.13 K cm/kV from our earlier calculations [10] and experimen- tal 0.125 K cm/kV of [23] for x = 0.89). At some critical field E∗, the jump vanishes, and the transition smears out. The calculated coordinates of the critical point are E∗ = 125 V/cm, T ∗ c =122.244 K for x = 0 and 7.1 kV/cm, 212.55 K for x = 0.89, which agrees well with the experiment [22, 23]. It should be noted that in our previous calculations [12] it was impossible to obtain a correct description of the polariza- tion behavior in the fields above the critical one, due to the necessity of using two different values of the effective dipole moment µ in calculations. The calculated electrocaloric changes of temperature ∆T of the K(H1−xDx )2PO4 and K(H1−xDx )2AsO4 crystals with the adiabatically applied electric field are shown in figures 4 and 5. The experimental data of [7] were obtained at T = 121 K, which was very close to the transition temperature of the sample used in the measurements. 90 100 110 120 130 0 0.01 0.02 0.03 0.04 0.05 0.06 P 3 , C/m2 T, K 1 2 3 4 E=0.000 MV/m (1) 0.581 MV/m (2) 1.250 MV/m (2) 2.031 MV/m (3) 211 212 213 214 0 0.01 0.02 0.03 0.04 0.05 P 3 , C/m2 T, K 1 2 3 4 E=0.000 MV/m (1) 0.282 MV/m (2) 0.564 MV/m (3) 0.710 MV/m (4) 0.846 MV/m (5) 1.128 MV/m (6) 5 6 Figure 2. The temperature dependence of polariza- tion of KH2PO4 at different E3(MV/m): 0.0 — 1, △ [5]; 0.581 — 2, ◦ [20]; 1.250 — 3, ä [20]; 2.031 — 4, ♦ [20]. Symbols are experimental points; solid lines: the present theory; dashed lines: the theoretical re- sults of [12]. Figure 3. The temperature dependence of polariza- tion of K(H1−xDx )2PO4 at x = 0.89 and at different E3 (MV/m): 0.0— 1; 0.282— 2, ◦; 0.564— 3,ä; 0.71— 4; 0.846— 5, ♦; 1.128— 6,△. Symbols are experimen- tal points taken from [21]; lines: the present theory. 43703-6 Electrocaloric effect in KH2PO4 family crystals 0 0.1 0.2 0.3 0.4 0 0.05 0.1 0.15 0.2 0.25 E, MV/ m ∆T, K 2 2’ 1’ 1 3’ 3 T−T c 0=−2.04K (1,1’) 0.00K (2,2’) 3.28K (3,3’) 0 10 20 30 40 0 1 2 3 4 5 6 7 8 E, MV/ m ∆T, K 1’3 1 3’ T−T c 0=−2.04K (1,1’) 0.00K (2,2’) 3.28K (3,3’) 2’ 2 Figure 4. The field dependence of the electrocaloric temperature change of K(H1−xDx )2PO4 for x = 0.0 (solid lines) and x = 0.89 (dashed lines) at T −T 0 c =−2.04 K— 1, 1′ ,ä; T = T 0 c — 2, 2′, ◦; T −T 0 c = 3.2 K — 3, 3′, ⋄. Experimental points are taken from [5] — ◦, ä and [7]— ⋄. As one can see, at small fields (figures 4, 5, left-hand) the calculated electrocaloric temperature change is a linear function of the field below T 0 c (curves 1, 1′) and a quadratic function above T 0 c (at 2, 2′). The experimental behavior below T 0 c is not linear at E3 < 2 kV/cm due to the domains: The domains, whose polarization is oriented along the field, are heated, whereas the domains, polarized in the opposite di- rection are cooled, thus the resulting net change of the sample temperature is close to zero. The experi- mental data for the electrocaloric temperature change at and above T 0 c available for KH2PO4, as well as the ∆T /∆E ratio below T 0 c at fields above 2 kV/cm (when the sample is in a single-domain state), are well reproduced by the theory. At higher fields (figures 4, 5, right-hand) the calculated electrocaloric temperature changes at tem- peratures above T 0 c are larger than below T 0 c . The obtained curves deviate from linear and quadratic behavior and reach saturation at E ≫ 500 kV/cm. It should be mentioned, however, that these curves are calculated with the linear over the field E3 pseudospin Hamiltonian (3). It would be very interesting to compare our results at high fields with experiment, for instance, to find out when non-linear contribu- tions to the Hamiltonian cannot be omitted any longer. Unfortunately, no experimental data for ∆T in 0 0.1 0.2 0.3 0.4 0 0.02 0.04 0.06 0.08 0.1 0.12 E, MV/ m ∆T, K 2 2’ 1’ 1 3’ 3 T−T c 0=−2.04K (1,1’) 0.00K (2,2’) 3.28K (3,3’) 0 10 20 30 40 0 1 2 3 4 5 6 7 8 E, MV/ m ∆T, K 1’ 3 1 3’ T−T c 0=−2.04K (1,1’) 0.00K (2,2’) 3.28K (3,3’) 2’ 2 Figure 5. The field dependence of the electrocaloric temperature change of KH2AsO4 (solid lines) and KD2AsO4 (dashed lines) at T −T 0 c =−2.04 K— 1, 1′ ; T = T 0 c — 2, 2′ ; T −T 0 c = 3.2 K — 3, 3′. 43703-7 A.S. Vdovych et al. 100 110 120 130 140 0 1 2 3 4 5 6 7 8 ∆ T, K T, K 1 2 3 4 E=2 MV/m (1) 5 MV/m (2) 10 MV/m (3) 20 MV/m (4) 50 MV/m (5) 5 190 200 210 220 230 0 2 4 6 8 10 ∆ T, K T, K 1 2 3 4 E=2 MV/m (1) 5 MV/m (2) 10 MV/m (3) 20 MV/m (4) 50 MV/m (5) 5 Figure 6. The temperature dependence of the electrocaloric temperature change of K(H1−xDx )2PO4 for x = 0.0 (left-hand) and x = 0.89 (right-hand) in different fields. the fields above 1 kV/cm are available. And, of course, possibilities for experimental measurements are limited by the dielectric strength of the samples. As one can see from the temperature dependence of ∆T (figure 6) for K(H1−xDx )2PO4 crystals, the calculated electrocaloric temperature change is the largest at temperatures below T 0 c but close Tc and can exceed 6 K; however, the fields required to reach ∆T that high are not accessible in reality, because most likely they exceed the dielectric strength of the crystals. 4. Conclusions Taking into account the dependence of the effective dipole moment on the order parameter within the framework of the proton orderingmodel allows us to correctly describe the smearing of the ferroelec- tric phase transition in high electric fields as well as the electrocaloric effect in the KDP family crystals. The theory predicts the values of the electrocaloric temperature change of a few Kelvins in high fields. Additional experimental measurements of ∆T in the fields above 2 kV/cm are necessary. Appendix The notations introduced in equations (11)–(12) are as follows: N6 = 2a(βε) 2 coshβδaε6 +4b(βw) 2 cosh(z −βδ1ε6)+ (βw1) 2d +2ε6β 2 (−εδa Ma +wδ1M1) +ε2 6 [ 2a(βδa ) 2 coshβδaε6 + (βδs ) 2 cosh(2z +βδsε6)+4b(βδ1) 2 cosh(z −βδ1ε6) ] , q6 = 2bβw sinh(z −βδ1ε6)+ε6β [ −δs cosh(2z +βδsε6)+2bδ1 cosh(z −βδ1ε6) ] , λ=−βεδa Ma +βwδ1M1 +ε6β [ δ2 s cosh(2z +βδsε6)+2aδ2 a coshβδaε6 +4bδ2 1 cosh(z −βδ1ε6) ] , ηT = pε 6 + v 2(µ+12µ′η2) (e36 −e2 36)εT , εT = [ 2β vD ( 2T zT f6 −λ+ Mr D ) − 4pε 6 v ( ψ6 − zη f6 D )] / cE 66 . In turn, pε 6 = 1 T 2κT zT + [q6 −ηM] D −2κzη , 43703-8 Electrocaloric effect in KH2PO4 family crystals cE 66 is the isothermal elastic constant at a constant field cE 66 = cE0 66 + 8ψ6 v β(−ψ6κ+ f6) D −2zηκ − 4βzη f 2 6 vD(D −2zηκ) − 2β vD [ δ2 s cosh(2z +βδsε6)+2aδ2 a coshβδaε6 +4bδ2 1 cosh(z −βδ1ε6) ] + 2βr 2 vD2 , and e36 is the isothermal piezoelectric coefficient e36 =− ( ∂σ6 ∂E3 ) T,ε6 = ( ∂P3 ∂ε6 ) T,E3 = e0 36 + 2(µ+12µ′η2) v βθ6 D −2zηκ , with θ6 =−2κψ6 + f6 , f6 = δs cosh(2z +βδsε6)−2bδ1 cosh(z −βδ1ε6)+ηr, zη = 1 1−η2 +βνc+12βµ′ηE3 . References 1. Valant M., Progr. Mater. Sci., 2012, 57, 980; doi:10.1016/j.pmatsci.2012.02.001. 2. Scott J.F., Annu. Rev. Mater. Res., 2011, 41, 229; doi:10.1146/annurev-matsci-062910-100341. 3. Mischenko A.S., Zhang Q., Scott J.F., Whatmore R.W., Mathur N.D., Science, 2006, 311, 1270; doi:10.1126/science.1123811. 4. Rose M.C., Cohen R.E., Phys. Rev. Lett., 2012, 109, 187604; doi:10.1103/PhysRevLett.109.187604. 5. Wiseman G.G., IEEE Trans. Electron Devices, 1969, 16, 588; doi:10.1109/T-ED.1969.16804. 6. Baumgartner H., Helv. Phys. Acta., 1950, 23, 651. 7. Shimshoni M., Harnik E., J. Phys. Chem. Solids, 1969, 31, 1416; doi:10.1016/0022-3697(70)90148-4. 8. Dunne L.J., Valant M., Manos G., Axelsson A.-K., Alford N., Appl. Phys. Lett., 2008, 93, 122906; doi:10.1063/1.2991443. 9. Slater J.C., J. Chem. Phys., 1941, 9, 16; doi:10.1063/1.1750821. 10. Stasyuk I.V., Levitskii R.R., Moina A.P., Lisnii B.M., Ferroelectrics, 2001, 254, 213; doi:10.1080/00150190108215002. 11. Stasyuk I.V., Levitskii R.R., Zachek I.R., Moina A.P., Phys. Rev. B, 2000, 62, 6198; doi:10.1103/PhysRevB.62.6198. 12. Levitsky R.R., Zachek I.R., Vdovych A.S., Moina A.P., J. Phys. Stud., 2010, 14, 1701. 13. Lisnii B.M., Levitskii R.R., Baran O.R., Phase Transitions, 2007, 80, 25; doi:10.1080/01411590701315591. 14. Stasyuk I.V., Levitskii R.R., Phys. Status Solidi B, 1970, 39, K35; doi:10.1002/pssb.19700390144. 15. Levitskii R.R., Korinevski N.A., Stasyuk I.V., Ukr. J. Phys., 1974, 19, 1289. 16. Blinc R., Svetina S., Phys. Rev., 1966, 147, 430; doi:10.1103/PhysRev.147.430. 17. Vdovych A.S., Moina A.P., Levitskii R.R., Zachek I.R., Preprint arXiv:1405.1327, 2014. 18. Stephenson C.C., Hooly G.J., J. Am. Chem. Soc., 1944, 66, No. 8, 1397; doi:10.1021/ja01236a054. 19. Strukov B.A., Baddur A., Koptsik V.A., Velichko I.A., Solid State Phys., 1972, 14, No. 4, 1034. 20. Chabin M., Gilletta F., Ferroelectrics, 1977, 15, 149; doi:10.1080/00150197708237808. 21. Sidnenko E.V., Gladkii V.V., Kristallografiya, 1972, 17, 978 (in Russian) [Sov. Phys. Crystallogr., 1973, 17, 861]. 22. Western A.B., Baker A.G., Bacon C.R., Schmidt V.H., Phys. Rev. B, 1978, 17, 4461; doi:10.1103/PhysRevB.17.4461. 23. Gladkii V.V., Sidnenko E.V., Sov. Phys. Solid State, 1972, 13, 2592. 43703-9 http://dx.doi.org/10.1016/j.pmatsci.2012.02.001 http://dx.doi.org/10.1146/annurev-matsci-062910-100341 http://dx.doi.org/10.1126/science.1123811 http://dx.doi.org/10.1103/PhysRevLett.109.187604 http://dx.doi.org/10.1109/T-ED.1969.16804 http://dx.doi.org/10.1016/0022-3697(70)90148-4 http://dx.doi.org/10.1063/1.2991443 http://dx.doi.org/10.1063/1.1750821 http://dx.doi.org/10.1080/00150190108215002 http://dx.doi.org/10.1103/PhysRevB.62.6198 http://dx.doi.org/10.1080/01411590701315591 http://dx.doi.org/10.1002/pssb.19700390144 http://dx.doi.org/10.1103/PhysRev.147.430 http://arxiv.org/abs/1405.1327 http://dx.doi.org/10.1021/ja01236a054 http://dx.doi.org/10.1080/00150197708237808 http://dx.doi.org/10.1103/PhysRevB.17.4461 A.S. Vdovych et al. Електрокалоричний ефект у кристалах типу KH2PO4 А.С. Вдович1, А.П. Моїна1, Р.Р. Левицький1, I.Р. Зачек2 1 Iнститут фiзики конденсованих систем НАН України, вул. I. Свєнцiцького, 1, 79011 Львiв, Україна 2 Нацiональний унiверситет “Львiвська полiтехнiка”, вул. С. Бандери, 12, 79013 Львiв, Україна В моделi протонного впорядкування для кристалiв типу KH2PO4 враховано залежнiсть ефективних ди- польних моментiв вiд параметра протонного впорядкування. В наближеннi чотиричастинкового класте- ра розраховано поляризацiю кристалiв та дослiджено електрокалоричний ефект у них. Описано розми- вання сегнетоелектричного фазового переходу поздовжним електричним полем. Отримано добре узго- дження з експериментальними даними. Ключовi слова: електрокалоричний ефект, KDP, кластерне наближення, поляризацiя 43703-10 Introduction Thermodynamic characteristics Numerical calculations Conclusions