On the group of unitriangular automorphisms of the polynomial ring in two variables over a finite field

The group UJ₂(Fq) of unitriangular automorphisms of the polynomial ring in two variables over a finite field Fq, q = pm, is studied. We proved that UJ₂(Fq) is isomorphic to a standard wreath product of elementary Abelian p-groups. Using wreath product representation we proved that the nilpotency cla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2014
Hauptverfasser: Leshchenko, Yu., Sushchansky, V.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2014
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/152947
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On the group of unitriangular automorphisms of the polynomial ring in two variables over a finite field / Yu. Leshchenko, V. Sushchansky // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 2. — С. 288–297. — Бібліогр.: 7 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:The group UJ₂(Fq) of unitriangular automorphisms of the polynomial ring in two variables over a finite field Fq, q = pm, is studied. We proved that UJ₂(Fq) is isomorphic to a standard wreath product of elementary Abelian p-groups. Using wreath product representation we proved that the nilpotency class of UJ₂(Fq) is c = m(p − 1) + 1 and the (k + 1)th term of the lower central series of this group coincides with the (c − k)th term of its upper central series. Also we showed that UJn(Fq) is not nilpotent if n ≥ 3.
ISSN:1726-3255