Об одном вопросе Б. Амберга
In the case where a group G is the product G = AB of Abelian subgroups A and B, one of which has a finite 0-rank, it is proved that the Fitting subgroup F and the Hirsch - Plotkin radical R admit the decompositions F = (F⋂A)(F⋂B) and R = (R⋂A)(R⋂B), respectively. This gives the affirmative answer to...
Saved in:
| Published in: | Український математичний журнал |
|---|---|
| Date: | 1994 |
| Main Author: | |
| Format: | Article |
| Language: | Russian |
| Published: |
Інститут математики НАН України
1994
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/153138 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Об одном вопросе Б. Амберга / Я.П. Сысак // Український математичний журнал. — 1994. — Т. 46, № 4. — С. 457–461. — Бібліогр.: 5 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | In the case where a group G is the product G = AB of Abelian subgroups A and B, one of which has a finite 0-rank, it is proved that the Fitting subgroup F and the Hirsch - Plotkin radical R admit the decompositions F = (F⋂A)(F⋂B) and R = (R⋂A)(R⋂B), respectively. This gives the affirmative answer to B. Amberg's question.
|
|---|---|
| ISSN: | 1027-3190 |