Geometric filters for protein–ligand complexes based on phenomenological molecular models
Molecular docking is a widely used method of computer-aided drug design capable of accurate prediction of protein-ligand complex conformations. However, scoring functions used to estimate free energy of binding still lack accuracy. Aim. Development of computationally simple and rapid algorithms for...
Gespeichert in:
| Datum: | 2013 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут молекулярної біології і генетики НАН України
2013
|
| Schriftenreihe: | Вiopolymers and Cell |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/153215 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Geometric filters for protein–ligand complexes based on phenomenological molecular models / O.O. Sudakov, O.M. Balinskyi, M.O. Platonov, D.B. Kovalskyy // Вiopolymers and Cell. — 2013. — Т. 29, №. 5. — С. 418-423. — Бібліогр.: 9 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-153215 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1532152025-02-09T23:07:59Z Geometric filters for protein–ligand complexes based on phenomenological molecular models Геометричні фільтри для комплексів білок–ліганд на основі феноменологічних молекулярних моделей Геометрические фильтры для комплексов белок–лиганд на основе феноменологических молекулярных моделей Sudakov, O.O. Balinskyi, O.M. Platonov, M.O. Kovalskyy, D.B. Bioinformatics Molecular docking is a widely used method of computer-aided drug design capable of accurate prediction of protein-ligand complex conformations. However, scoring functions used to estimate free energy of binding still lack accuracy. Aim. Development of computationally simple and rapid algorithms for ranking ligands based on docking results. Methods. Computational filters utilizing geometry of protein-ligand complex were designed. Efficiency of the filters was verified in a cross-docking study with QXP/Flo software using crystal structures of human serine proteases thrombin (F2) and factor Xa (F10) and two corresponding sets of known selective inhibitors. Results. Evaluation of filtering results in terms of ROC curves with varying filter threshold value has shown their efficiency. However, none of the filters outperformed QXP/Flo built-in scoring function Pi . Nevertheless, usage of the filters with optimized set of thresholds in combination with Pi achieved significant improvement in performance of ligand selection when compared to usage of Pi alone. Conclusions. The proposed geometric filters can be used as a complementary to traditional scoring functions in order to optimize ligand search performance and decrease usage of computational and human resources. Молекулярний докінг є широко застосовуваним обчислювальним методом пошуку лігандів біомолекул, здатним до достатньо точного передбачення конформацій комплексів білок–ліганд. У той же час скоринговим функціям, що використовують для оцінки сили зв’язування, бракує точності. Мета. Розробка обчислювально простих та швидких алгоритмів для вибору потенційних лігандів з комплексів, отриманих у результаті докінгу. Методи. Створено обчислювальні фільтри, засновані на геометричних співвідношеннях у комплексі білок–ліганд, ефективність яких перевірено крос-докінговим дослідженням із застосуванням кристалічних структур людських серинових протеаз тромбіна (F2) і фактора 10а (F10), а також двох відповідних наборів відомих селективних інгібіторів за допомогою програмного забезпечення QXP/Flo. Результати. Оцінено результати застосування фільтрів у термінах ROC-кривих із змінними пороговими значеннями та показано їхню ефективність. Проте жоден з фільтрів не перевершив за ефективністю вбудовану скорингову функцію Pi програми QXP/ Flo. Тим не менш, використання фільтрів з оптимізованими пороговими значеннями у комбінації з Pi дозволило значно збільшити ефективність порівняно із застосуванням лише Pi. Висновки. Розроблені геометричні фільтри можуть слугувати доповненням до традиційних скорингових функцій для оптимізації пошуку лігандів і зменшення залучення обчислювальних та люд- ських ресурсів. Молекулярный докинг – широко используемый вычислительный метод поиска лигандов биомолекул, способный довольно точно предсказывать конформацию комплекса белок–лиганд. В то же время скоринговые функции, используемые для оценки силы связывания, недостаточно точны. Цель. Разработка вычислительно простых и быстрых алгоритмов для выбора потенциальных лигандов из комплексов, полученных в результате докинга. Методы. Созданы вычислительные фильтры на основе геометрических соотношений в комплексе белок–лиганд, эффективность которых проверена кросс-докинговым исследованием c применением кристаллических структур человеческих сериновых протеаз тромбина (F2) и фактора 10а (F10), а также двух соответствующих наборов известных селективных ингибиторов с помощью программного обеспечения QXP/Flo. Результаты. Оценены результаты применения фильтров в терминах ROC-кривых с переменными пороговыми значениями и показана их эффективность. Однако ни один из фильтров не превзошел по эффективности встроенную скоринговую функцию Pi программы QXP/Flo. Тем не менее, использование фильтров с оптимизированными пороговыми значениями в комбинации с Pi позволило существенно увеличить эффективность в сравнении с применением только Pi. Выводы. Разработанные геометрические фильтры могут служить дополнением к традиционным скоринговым функциям для оптимизации поиска лигандов и уменьшения привлечения вычислительных и человеческих ресурсов. 2013 Article Geometric filters for protein–ligand complexes based on phenomenological molecular models / O.O. Sudakov, O.M. Balinskyi, M.O. Platonov, D.B. Kovalskyy // Вiopolymers and Cell. — 2013. — Т. 29, №. 5. — С. 418-423. — Бібліогр.: 9 назв. — англ. 0233-7657 DOI: http://dx.doi.org/10.7124/bc.000833 https://nasplib.isofts.kiev.ua/handle/123456789/153215 577.322.23 en Вiopolymers and Cell application/pdf Інститут молекулярної біології і генетики НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Bioinformatics Bioinformatics |
| spellingShingle |
Bioinformatics Bioinformatics Sudakov, O.O. Balinskyi, O.M. Platonov, M.O. Kovalskyy, D.B. Geometric filters for protein–ligand complexes based on phenomenological molecular models Вiopolymers and Cell |
| description |
Molecular docking is a widely used method of computer-aided drug design capable of accurate prediction of protein-ligand complex conformations. However, scoring functions used to estimate free energy of binding still lack accuracy. Aim. Development of computationally simple and rapid algorithms for ranking ligands based on docking results. Methods. Computational filters utilizing geometry of protein-ligand complex were designed. Efficiency of the filters was verified in a cross-docking study with QXP/Flo software using crystal structures of human serine proteases thrombin (F2) and factor Xa (F10) and two corresponding sets of known selective inhibitors. Results. Evaluation of filtering results in terms of ROC curves with varying filter threshold value has shown their efficiency. However, none of the filters outperformed QXP/Flo built-in scoring function Pi . Nevertheless, usage of the filters with optimized set of thresholds in combination with Pi achieved significant improvement in performance of ligand selection when compared to usage of Pi alone. Conclusions. The proposed geometric filters can be used as a complementary to traditional scoring functions in order to optimize ligand search performance and decrease usage of computational and human resources. |
| format |
Article |
| author |
Sudakov, O.O. Balinskyi, O.M. Platonov, M.O. Kovalskyy, D.B. |
| author_facet |
Sudakov, O.O. Balinskyi, O.M. Platonov, M.O. Kovalskyy, D.B. |
| author_sort |
Sudakov, O.O. |
| title |
Geometric filters for protein–ligand complexes based on phenomenological molecular models |
| title_short |
Geometric filters for protein–ligand complexes based on phenomenological molecular models |
| title_full |
Geometric filters for protein–ligand complexes based on phenomenological molecular models |
| title_fullStr |
Geometric filters for protein–ligand complexes based on phenomenological molecular models |
| title_full_unstemmed |
Geometric filters for protein–ligand complexes based on phenomenological molecular models |
| title_sort |
geometric filters for protein–ligand complexes based on phenomenological molecular models |
| publisher |
Інститут молекулярної біології і генетики НАН України |
| publishDate |
2013 |
| topic_facet |
Bioinformatics |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/153215 |
| citation_txt |
Geometric filters for protein–ligand complexes based on phenomenological molecular models / O.O. Sudakov, O.M. Balinskyi, M.O. Platonov, D.B. Kovalskyy // Вiopolymers and Cell. — 2013. — Т. 29, №. 5. — С. 418-423. — Бібліогр.: 9 назв. — англ. |
| series |
Вiopolymers and Cell |
| work_keys_str_mv |
AT sudakovoo geometricfiltersforproteinligandcomplexesbasedonphenomenologicalmolecularmodels AT balinskyiom geometricfiltersforproteinligandcomplexesbasedonphenomenologicalmolecularmodels AT platonovmo geometricfiltersforproteinligandcomplexesbasedonphenomenologicalmolecularmodels AT kovalskyydb geometricfiltersforproteinligandcomplexesbasedonphenomenologicalmolecularmodels AT sudakovoo geometričnífílʹtridlâkompleksívbíloklígandnaosnovífenomenologíčnihmolekulârnihmodelei AT balinskyiom geometričnífílʹtridlâkompleksívbíloklígandnaosnovífenomenologíčnihmolekulârnihmodelei AT platonovmo geometričnífílʹtridlâkompleksívbíloklígandnaosnovífenomenologíčnihmolekulârnihmodelei AT kovalskyydb geometričnífílʹtridlâkompleksívbíloklígandnaosnovífenomenologíčnihmolekulârnihmodelei AT sudakovoo geometričeskiefilʹtrydlâkompleksovbelokligandnaosnovefenomenologičeskihmolekulârnyhmodelei AT balinskyiom geometričeskiefilʹtrydlâkompleksovbelokligandnaosnovefenomenologičeskihmolekulârnyhmodelei AT platonovmo geometričeskiefilʹtrydlâkompleksovbelokligandnaosnovefenomenologičeskihmolekulârnyhmodelei AT kovalskyydb geometričeskiefilʹtrydlâkompleksovbelokligandnaosnovefenomenologičeskihmolekulârnyhmodelei |
| first_indexed |
2025-12-01T14:53:19Z |
| last_indexed |
2025-12-01T14:53:19Z |
| _version_ |
1850318052684464128 |
| fulltext |
BIOINFORMATICS
UDC 577.322.23
Geometric filters for protein–ligand complexes based
on phenomenological molecular models
O. O. Sudakov1, O. M. Balinskyi1, M. O. Platonov2, D. B. Kovalskyy3
1Taras Shevchenko National University of Kyiv
64, Volodymyrs’ka Str., Kyiv, Ukraine, 01601
2Institute of Molecular Biology and Genetics, NAS of Ukraine
150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
3Department of Biochemistry, University of Texas Health Science Center
7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
saa@univ.kiev.ua
Molecular docking is a widely used method of computer-aided drug design capable of accurate prediction of
protein-ligand complex conformations. However, scoring functions used to estimate free energy of binding still
lack accuracy. Aim. Development of computationally simple and rapid algorithms for ranking ligands based on
docking results. Methods. Computational filters utilizing geometry of protein-ligand complex were designed. Ef-
ficiency of the filters was verified in a cross-docking study with QXP/Flo software using crystal structures of hu-
man serine proteases thrombin (F2) and factor Xa (F10) and two corresponding sets of known selective inhibi-
tors. Results. Evaluation of filtering results in terms of ROC curves with varying filter threshold value has shown
their efficiency. However, none of the filters outperformed QXP/Flo built-in scoring function Pi . Nevertheless,
usage of the filters with optimized set of thresholds in combination with P
i
achieved significant improvement in
performance of ligand selection when compared to usage of P
i
alone. Conclusions. The proposed geometric fil-
ters can be used as a complementary to traditional scoring functions in order to optimize ligand search perfor-
mance and decrease usage of computational and human resources.
Keywords: drug design, molecular modeling, docking, scoring, geometric filtering.
Introduction. Nowadays, computer-aided drug design
is a widely used technique. It is mostly based on mo-
lecular docking and scoring approach [1]. Docking is
the procedure of protein (target) and small molecule (li-
gand) complexes geometry optimization aimed at fin-
ding the global energy minimum of the system. Accor-
ding to thermodynamics, the most likely configuration
of the complex corresponds to the Gibbs free energy mi-
nimum. Energy is usually estimated using certain force
field model and its minimization is performed by va-
rious methods. Typically, a large collection of small
molecules is docked against the protein active site. For
each optimized complex, different characteristics (sco-
res) are calculated to estimate binding free energy. Li-
gands with the highest scores are filtered for further
testing in biophysical, biochemical and/or cell-based
screening assays.
Although there are many publicly available and
commercial tools for molecular docking and filters for
scoring, some problems still exist. While docking usual-
ly can provide adequate results for optimized geometry
prediction, scoring is a tricky thing and requires human
intrusion like visual inspection of three-dimensional
molecular complex structures by a drug discovery ex-
pert [2].
As the mechanisms of intermolecular interaction in
a protein–ligand complex exceed the classical mecha-
nics limits, accurate prediction of binding energy needs
quantum mechanical calculations, which boost require-
ments for memory size and floating point calculations
speed by orders of magnitude. Furthermore, flexibility
of both protein and ligand molecules causes an increase
418
ISSN 0233–7657. Biopolymers and Cell. 2013. Vol. 29. N 5. P. 418–423 doi: 10.7124/bc.000833
� Institute of Molecular Biology and Genetics, NAS of Ukraine, 2013
of freedom degrees of a typical system up to hundreds
or thousands for simulations with implicit solvent mo-
dels and even tens of thousands in case of explicit
solvent.
As a result of these complications, precise virtual
screening of large collections of small molecules be-
comes practically impossible, which forced us to use
simplified models with empirical scoring algorithms.
In this paper, we introduce geometric filters, which
are designed to select protein-ligand complexes from
the database of molecular docking results. The filters
use the molecular geometry of protein–ligand complex
as a main filtering characteristic as opposed to appro-
ximated potentials of inter-atomic interaction or other
loosely defined and computationally expensive func-
tions.
The main idea behind this approach is based on the
fact that molecular docking can predict the molecular
geometry stationary point rather accurately, which has
been proved by numerous X-ray structural analysis
experiments [3]. All mentioned above makes the propo-
sed filters robust and quick for interactive usage.
Materials and methods. In this study, four types
of geometry-based filters were introduced: nearest
atom filter (NA), center of mass filter (COM), out coef-
ficient filter (OUT) and hydrogen bond filter (HB). Des-
cription of the filters is provided below.
Nearest atom filter finds atom of the ligand that is
the nearest to the given atom of protein in the current
complex. Ligand passes the filter if this distance is less
than the specified value:
min ,
min
l
l pr r R
� �
� �
where l is ligand atom index, p is the given protein
atom index, rn
�
is position of the n-th atom, Rmin is the
specified minimal distance. This filter has complexity
of O(n) and can select ligands that are partially located
close to the given atom of the protein active site and
evidently screens it from solvent. Filtering results may
be modified by considering only ligand atoms of cer-
tain type.
Center of mass filter finds the distance from ligand
center of mass to the given protein atom. Ligand passes
the filter if this distance is less than the specified value:
r m
m
R
l l
l
l
l
�
�
�
�
min
,
where mn is mass of the n-th atom. This filter can select
ligands that are located close to the specified atom of
the protein active site and evidently screen it.
Out coefficient filter calculates numerical characteri-
stic which approximates the probability of destroying
the given protein-ligand complex. The following model
is used. The complex will be destroyed if ligand binds to
some external molecule and bonds with protein are des-
troyed. The probability of this event, P, may be appro-
ximated as
P
N
N
e
l
� ,
where Ne is average number of ligand atoms that may
bind to the external molecule and Nl is total number of
ligand atoms. The less P, the more stable the complex .
Number Ne is estimated as
N pe k
e
k
N l
� � ,
where k is ligand atom index and pk
e is the probability
that k-th ligand atom will bind to the external molecule.
Probability pk
e depends on the number of protein atoms
that bind to the k-th ligand atom and shield it from
outside. Probability of shielding may be described by
the Markov field model with the Gibbs distribution:
p e
k
e nk� � ,
where nk is average number of protein atoms which
shield the k-th ligand atom. Number nk may be estima-
ted in the same way:
n b
k p
k
p
N p
� � ,
where bp
k is the probability that p-th protein atom binds
to the k-th ligand atom. Probability bp
k in turn also may
be described by Markov field model:
b e
k
p
r r
R
l p
kp�
�
�
� �
,
419
GEOMETRIC FILTERS FOR PROTEIN–LIGAND COMPLEXES
where Rkp is characteristic length of chemical bond bet-
ween k-th ligand atom and p-th protein atom. The final
expression for P is thus
P
e
N
r r
R
P
N
k
N
l
l p
kp
pl
�
�
�
�
�
�
�
� �
��exp
.
This filter requires O(n2) operations. To simplify
the case, Rkp is defined to be the same for all atom pairs
and equal to 1.1 C. In this case, the exact value influ-
ences only the value of filtering function but not its be-
havior.
Hydrogen bonds filter calculates estimated number
of hydrogen bonds between ligand and protein atoms.
Each hydrogen bond is characterized by strength
coefficient that may be estimated as
p Ae e e
H
r r
R
r r
R
A H
H
A H
H�
�
�
�
�
�
� � � �
1 2
cos ,�
where r
A1
�
is position of the 1-st acceptor, r
A 2
�
is posi-
tion of the second acceptor, r
H
�
is position of hydrogen
atom, RH is characteristic length of hydrogen bond and
� is the bond angle.
To optimize the filters parameters and verify their
effectiveness, we conducted a cross-docking study. Hu-
man serine proteases thrombin (gene F2) and factor Xa
(gene F10) were selected as targets. X-ray crystal struc-
tures of the protein catalytic sites were retrieved from
RCSB Protein Data Bank [4], entries 1oyt and 1f0s res-
pectively. Two sets of selective small molecule inhibi-
tors containing 244 compounds for thrombin and 331
compounds for factor Xa were retrieved from MDDR
database [5]. After generation of stereoisomers and ioni-
zation using LigPrep software [6], compounds were do-
cked into the three-dimensional protein active site struc-
ture using QXP/Flo software [7] with 100 steps of
SDOCK+ routine. 10 lowest energy complex structures
were selected for each compound structure, which re-
sulted in a total of 10,580 and 7,410 complexes for
thrombin and factor Xa inhibitor sets respectively. Fil-
ters were applied to the complexes, and their perfor-
mance was evaluated in terms of receiver operating cha-
racteristics (ROC).
Description of all filters is provided in Table 1. Ar-
bitrary atoms of thrombin active site which were selec-
ted for the nearest atom filters and center of mass filter
are shown in Fig 1.
Results and discussion. To evaluate efficiency of
the filters, we conducted a virtual screening study whe-
re two sets of small-molecule inhibitors of two serine
proteases were docked against two sets of their selecti-
ve inhibitors. This resulted in a set of protein–ligand
complexes with both «native» and «wrong» inhibitors.
For each filter, a receiver operating characteristic (ROC)
was built. For each of the two proteins, the compounds
which have at least one protein-ligand complex passed
through a filter were considered positives. Out of positi-
ves, essentially, the compounds from one protein’s inhi-
bitor set were considered true positives (TP), while com-
pounds from another protein’s inhibitor set were consi-
dered false positives (FP). Additionally, a ROC was built
for the docking software QXP/Flo+ built-in scoring
function Pi (Fig. 2). For the two protein crystal struc-
tures, we compare only filters which are independent of
arbitrary protein atom selection: OUT, HB and Pi.
It is clear from the ROCs, that the filters can be used
efficiently for selection of inhibitors, except the hydro-
gen bond filter in case of factor Xa. However, the QXP/
Flo built-in scoring function outperforms any of the pro-
posed filters.
Next, we focused on selection of thrombin inhi-
bitors with introduction of atom-specific filters NA and
420
SUDAKOV O. O. ET AL.
Filter ID Filter name Protein atom
Pi
QXP/Flo built-in scoring function Pi –
OUT Out coefficient –
HB Hydrogen bonds –
NA182 Nearest atom Leu99 CG
NA314 Nearest atom Asp189 OD1
NA63 Nearest atom Tyr60 CD1
COM Center of mass Gly216 HN
Table 1
Summary of all filters applied in the study. Residue numbering
according to the crystal structure, PDB ID 1oyt
COM. ROCs for all filters for this case are provided in
Fig. 3.
As mentioned in Materials and methods, the num-
ber of compounds in the two sets is different. Further-
more, as 10 complexes were generated for every stereo-
isomer and every possible ionization state, different
compounds also have different number of complexes in
the docking output. As a result, the number of thrombin
inhibitor complexes (true positives) is about 25 %
higher than that of factor Xa inhibitors (false positives).
To investigate an impact of this inequality, in addition
to obvious compound-based random guess ROC (TPR
= FPR), a complex-based random guess ROC curve
was built (Fig. 3). At this point, all complexes had equ-
421
GEOMETRIC FILTERS FOR PROTEIN–LIGAND COMPLEXES
Fig. 1. Three-dimensional structure of human
thrombin catalytic site in complex with small-
molecule inhibitor retrieved from PDB entry
1oyt. Atoms selected for filtering are shown:
1 – atom 314, Asp189 OD; 2 – center of mass
atom, Gly216 NH; 3 – atom 182, Leu99 CG;
4 – atom 314, Tyr60 CD1
0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
FPR
T
P
R
1
2
3
4
5
6
7
Fig. 2. Receiver operating characteristics for thrombin and factor Xa,
for the filters which are independent of protein atom selection: 1 – FXa
PI; 2 – Thrombin PI; 3 – Thrombin HB; 4 – Thrombin OUT; 5 – FXa
OUT; 6 – Random guess; 7 – FXa HB
0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
FPR
T
P
R
1
2
3
9
8
7
6
5
4
Fig. 3. Receiver operating characteristics for different filters and their
combination. ROC curve for random selection of protein-ligand comp-
lexes is included; C – Combination; 1 – PI; 2 – HB; 3 – COM; 4 –
NA314; 5 – OUT; 6 – NA182; 7 – Random guess (complex based); 8 –
NA63; 9 – Random guess (compound based)
422
SUDAKOV O. O. ET AL.
al probability to pass a «random guess filter», and this
probability was considered the filter parameter, vary-
ing along the ROC curve.
As one can see from the Fig. 3, all ROC curves are
located above the compound-based random guess line,
which proves the filters efficiency. Furthermore, all of
them are located above complex-based random guess
curve, except those for the nearest atom filters NA182
and NA63, which are only effective in certain ranges.
However, none of the filters outperformed the built-in
scoring function Pi. DesPi te that, use of Pi alone would
not be a proper choice. Really, let us consider that in a
tyPi cal docking setup, we screen a set of about 50,000
compounds to obtain a docking library of no more than
5,000 compounds, which are going to be tested experi-
mentally. As we do not expect more than a few percent
of true binders in the initial set, size of the docking lib-
rary can be estimated as size of initial set multiplied by
false positive ratio (FPR), which in this case should be
10 % at maximum. As one can see from the ROCs, even
the best-performing at this FPR filters, Pi and HB, give
only about 40 % of true positives, which is generally not
acceptable as it means loss of more than half of po-
tentially active compounds at the very first stage of drug
development. To address this issue, we carried out mul-
tiple filtering, in which all protein-ligand complexes
were sequentially conducted through all 7 filters, inclu-
ding the built-in scoring, thus applying logical conjunc-
tion to the filter conditions. In this computation, both TPR
and FPR are the functions of 7 variables, which are filter
cut-off values. The values of TPR and FPR were samp-
led in a broad range of filter parameters to optimize fil-
tering performance. The resulting ROC data points are
plotted in Fig. 3, and filter cut-off values for them are
provided in Table 2.
Conclusions. The proposed geometric filters for
protein–ligand complexes have shown their efficiency
for selection of specific inhibitors in a cross-docking
study for serine proteases thrombin and factor Xa. How-
ever, their efficiency in terms of receiver operating
cha- racteristics is lower than that of QXP/Flo+ native
sco- ring function. Nevertheless, the filters can
significantly improve virtual screening performance
when used in combination with the scoring function.
When compa- red to usage of the scoring function
alone, target-spe- cific tuning of filtering parameters
achieved an incre- ase of TPR from 40 % to 80 % at 10
% FPR, and from 30 % to 65 % at 5 % FPR.
Acknowledgements. Software development and
computations were performed using Ukrainian Natio-
nal Grid Infrastructure and computing cluster of Taras
Shevchenko National University of Kyiv [8, 9].
Î. Î. Ñóäàêîâ, Î. Ì. Áàë³íñüêèé, Ì. Î. Ïëàòîíîâ,
Ä. Á. Êîâàëüñüêèé
Ãåîìåòðè÷í³ ô³ëüòðè äëÿ êîìïëåêñ³â á³ëîê–ë³ãàíä íà îñíîâ³
ôåíîìåíîëîã³÷íèõ ìîëåêóëÿðíèõ ìîäåëåé
Ðåçþìå
Ìîëåêóëÿðíèé äîê³íã º øèðîêî çàñòîñîâóâàíèì îá÷èñëþâàëüíèì
ìåòîäîì ïîøóêó ë³ãàíä³â á³îìîëåêóë, çäàòíèì äî äîñòàòíüî òî÷-
íîãî ïåðåäáà÷åííÿ êîíôîðìàö³é êîìïëåêñ³â á³ëîê–ë³ãàíä. Ó òîé
æå ÷àñ ñêîðèíãîâèì ôóíêö³ÿì, ùî âèêîðèñòîâóþòü äëÿ îö³íêè
ñèëè çâ’ÿçóâàííÿ, áðàêóº òî÷íîñò³. Ìåòà. Ðîçðîáêà îá÷èñëþ-
âàëüíî ïðîñòèõ òà øâèäêèõ àëãîðèòì³â äëÿ âèáîðó ïîòåíö³éíèõ
ë³ãàíä³â ç êîìïëåêñ³â, îòðèìàíèõ ó ðåçóëüòàò³ äîê³íãó. Ìåòîäè.
Ñòâîðåíî îá÷èñëþâàëüí³ ô³ëüòðè, çàñíîâàí³ íà ãåîìåòðè÷íèõ
ñï³ââ³äíîøåííÿõ ó êîìïëåêñ³ á³ëîê–ë³ãàíä, åôåêòèâí³ñòü ÿêèõ ïå-
ðåâ³ðåíî êðîñ-äîê³íãîâèì äîñë³äæåííÿì ³ç çàñòîñóâàííÿì êðèñ-
òàë³÷íèõ ñòðóêòóð ëþäñüêèõ ñåðèíîâèõ ïðîòåàç òðîìá³íà (F2) ³
ôàêòîðà 10à (F10), à òàêîæ äâîõ â³äïîâ³äíèõ íàáîð³â â³äîìèõ ñå-
ëåêòèâíèõ ³íã³á³òîð³â çà äîïîìîãîþ ïðîãðàìíîãî çàáåçïå÷åííÿ
QXP/Flo. Ðåçóëüòàòè. Îö³íåíî ðåçóëüòàòè çàñòîñóâàííÿ ô³ëüò-
ð³â ó òåðì³íàõ ROC-êðèâèõ ³ç çì³ííèìè ïîðîãîâèìè çíà÷åííÿìè
òà ïîêàçàíî ¿õíþ åôåêòèâí³ñòü. Ïðîòå æîäåí ç ô³ëüòð³â íå ïå-
TPR FPR Pi OUT HB NA182 NA314 NA63 COM
0.926 0.242 3.1 0.77 1.0 4.6 9.1 4.8 5.8
0.869 0.160 3.4 0.75 1.0 4.7 9.8 4.7 5.8
0.803 0.094 3.5 0.73 0.9 4.7 8.9 4.6 6.3
0.721 0.057 3.7 0.75 0.9 4.7 8.4 4.5 6.5
0.631 0.048 3.7 0.75 0.9 4.7 8.1 4.3 6.4
Table 2
Best-scoring filter cut-off value combinations. Values for nearest atom and center of mass filters are in angstroms (C)
ðåâåðøèâ çà åôåêòèâí³ñòþ âáóäîâàíó ñêîðèíãîâó ôóíêö³þ Pi ïðî-
ãðàìè QXP/ Flo. Òèì íå ìåíø, âèêîðèñòàííÿ ô³ëüòð³â ç îïòèì³-
çîâàíèìè ïîðîãîâèìè çíà÷åííÿìè ó êîìá³íàö³¿ ç Pi äîçâîëèëî çíà÷-
íî çá³ëüøèòè åôåêòèâí³ñòü ïîð³âíÿíî ³ç çàñòîñóâàííÿì ëèøå Pi.
Âèñíîâêè. Ðîçðîáëåí³ ãåîìåòðè÷í³ ô³ëüòðè ìîæóòü ñëóãóâàòè
äîïîâíåííÿì äî òðàäèö³éíèõ ñêîðèíãîâèõ ôóíêö³é äëÿ îïòèì³çà-
ö³¿ ïîøóêó ë³ãàíä³â ³ çìåíøåííÿ çàëó÷åííÿ îá÷èñëþâàëüíèõ òà ëþä-
ñüêèõ ðåñóðñ³â.
Êëþ÷îâ³ ñëîâà: êîìï’þòåðíà ðîçðîáêà ë³ê³â, ìîëåêóëÿðíå ìî-
äåëþâàííÿ, äîê³íã, ñêîðèíãîâà ôóíêö³ÿ, ãåîìåòðè÷í³ ô³ëüòðè.
À. À. Ñóäàêîâ, À. Ì. Áàëèíñêèé, Ì. Î. Ïëàòîíîâ, Ä. Á. Êîâàëüñêèé
Ãåîìåòðè÷åñêèå ôèëüòðû äëÿ êîìïëåêñîâ áåëîê–ëèãàíä íà
îñíîâå ôåíîìåíîëîãè÷åñêèõ ìîëåêóëÿðíûõ ìîäåëåé
Ðåçþìå
Ìîëåêóëÿðíûé äîêèíã – øèðîêî èñïîëüçóåìûé âû÷èñëèòåëüíûé
ìåòîä ïîèñêà ëèãàíäîâ áèîìîëåêóë, ñïîñîáíûé äîâîëüíî òî÷íî
ïðåäñêàçûâàòü êîíôîðìàöèþ êîìïëåêñà áåëîê–ëèãàíä. Â òî æå
âðåìÿ ñêîðèíãîâûå ôóíêöèè, èñïîëüçóåìûå äëÿ îöåíêè ñèëû ñâÿ-
çûâàíèÿ, íåäîñòàòî÷íî òî÷íû. Öåëü. Ðàçðàáîòêà âû÷èñëèòåëü-
íî ïðîñòûõ è áûñòðûõ àëãîðèòìîâ äëÿ âûáîðà ïîòåíöèàëüíûõ
ëèãàíäîâ èç êîìïëåêñîâ, ïîëó÷åííûõ â ðåçóëüòàòå äîêèíãà. Ìå-
òîäû. Ñîçäàíû âû÷èñëèòåëüíûå ôèëüòðû íà îñíîâå ãåîìåòðè-
÷åñêèõ ñîîòíîøåíèé â êîìïëåêñå áåëîê–ëèãàíä, ýôôåêòèâíîñòü
êîòîðûõ ïðîâåðåíà êðîññ-äîêèíãîâûì èññëåäîâàíèåì ñ ïðèìåíå-
íèåì êðèñòàëëè÷åñêèõ ñòðóêòóð ÷åëîâå÷åñêèõ ñåðèíîâûõ ïðîòå-
àç òðîìáèíà (F2) è ôàêòîðà 10à (F10), à òàêæå äâóõ ñîîòâåò-
ñòâóþùèõ íàáîðîâ èçâåñòíûõ ñåëåêòèâíûõ èíãèáèòîðîâ ñ ïîìî-
ùüþ ïðîãðàììíîãî îáåñïå÷åíèÿ QXP/Flo. Ðåçóëüòàòû. Îöåíåíû
ðåçóëüòàòû ïðèìåíåíèÿ ôèëüòðîâ â òåðìèíàõ ROC-êðèâûõ ñ ïå-
ðåìåííûìè ïîðîãîâûìè çíà÷åíèÿìè è ïîêàçàíà èõ ýôôåêòèâ-
íîñòü. Îäíàêî íè îäèí èç ôèëüòðîâ íå ïðåâçîøåë ïî ýôôåêòèâ-
íîñòè âñòðîåííóþ ñêîðèíãîâóþ ôóíêöèþ Pi ïðîãðàììû QXP/Flo.
Òåì íå ìåíåå, èñïîëüçîâàíèå ôèëüòðîâ ñ îïòèìèçèðîâàííûìè ïî-
ðîãîâûìè çíà÷åíèÿìè â êîìáèíàöèè ñ Pi ïîçâîëèëî ñóùåñòâåííî
óâåëè÷èòü ýôôåêòèâíîñòü â ñðàâíåíèè ñ ïðèìåíåíèåì òîëüêî Pi.
Âûâîäû. Ðàçðàáîòàííûå ãåîìåòðè÷åñêèå ôèëüòðû ìîãóò ñëó-
æèòü äîïîëíåíèåì ê òðàäèöèîííûì ñêîðèíãîâûì ôóíêöèÿì äëÿ
îïòèìèçàöèè ïîèñêà ëèãàíäîâ è óìåíüøåíèÿ ïðèâëå÷åíèÿ âû÷èñ-
ëèòåëüíûõ è ÷åëîâå÷åñêèõ ðåñóðñîâ.
Êëþ÷åâûå ñëîâà: êîìïüþòåðíàÿ ðàçðàáîòêà ëåêàðñòâ, ìîëå-
êóëÿðíîå ìîäåëèðîâàíèå, äîêèíã, ñêîðèíãîâàÿ ôóíêöèÿ, ãåîìåòðè-
÷åñêèå ôèëüòðû.
REFERENCES
1. Hurmach V. V., Balinskyi O. M., Platonov M. O., Borysko P. O.,
Prylutskyy Y. I. Molecular docking method involving SH2-do-
mains // Biotechnology.–2012.–5, N 2.–P. 31–40.
2. Cole J. C., Murray C. W., Nissink J. W., Taylor R. D., Taylor R.
Comparing protein-ligand docking programs is difficult //
Proteins.–2005.–60, N 3.–P. 325–332.
3. Wang R., Lu Y., Wang S. Comparative evaluation of 11 scoring
functions for molecular docking // J. Med. Chem.–2003.–46,
N 12.–P. 2287–2303.
4. Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N.,
Weissig H., Shindyalov I. N., Bourne P. E. The protein data bank
// Nucleic Acids Res.–2000.–28, N 1.–P. 235–242.
5. Schuffenhauer A., Zimmermann J., Stoop R., van der Vyver J.J.,
Lecchini S., Jacoby E. An ontology for pharmaceutical ligands
and its application for in silico screening and library design // J.
Chem. Inf. Comput. Sci.–2002.–42, N 4.–P. 947–955.
6. LigPrep User manual, Version 2.3.–New York: Schrodinger,
2009.–116 p.
7. Mcmartin C., Bohacek R. S. QXP: Powerful, raPi d computer
algorithms for structure-based drug design // J. Comput. Aided
Mol. Des.–1997.–11, N 4.–P. 333–344.
8. Zynovyev M., Svistunov S., Sudakov O., Boyko Y. Ukrainian Grid
Infrastructure: Practical Experience // Proc. 4-th IEEE Work-
shop IDAACS 2007 (September 6–8, 2007, Dortmund, Germa-
ny).–Dortmund, 2007.–P. 165–169. doi:10.1109/IDAACS.
2007.4488397
9. Salnikov A. O., Sliusar I. A., Sudakov O. O., Savytskyi O. V., Kor-
nlyuk A. I. MolDynGrid Virtual Laboratory as a part of Ukrai-
nian Academic Grid infrastructure // Proc. IEEE International
Workshop on Intelligent Data Acquisition and Advanced Com-
puting Systems: Technology and Applications (21–23 Septem-
ber 2009, Rende (Cosenza), Italy.–Rende, 2009.–P. 237–240.
Received 02.04.13
423
GEOMETRIC FILTERS FOR PROTEIN–LIGAND COMPLEXES
|