Existence of а multiplicative basis for a finitely spaced module over an aggregate
It is proved that a finitely spaced module over a k-category admits a multiplicative basis such a module gives to a matrix problem, in which the allowed column transformations are determined by a module structure, the row transformations are arbitrary, and the number of canonical matrices is infinit...
Збережено в:
| Опубліковано в: : | Український математичний журнал |
|---|---|
| Дата: | 1994 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
1994
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/153296 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Existence of а multiplicative basis for a finitely spaced module over an aggregate / A.V. Roiter, V.V. Sergeichuk // Український математичний журнал. — 1994. — Т. 46, № 5. — С. 567–579. — Бібліогр.: 3 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | It is proved that a finitely spaced module over a k-category admits a multiplicative basis such a module gives to a matrix problem, in which the allowed column transformations are determined by a module structure, the row transformations are arbitrary, and the number of canonical matrices is infinite.
Доведено, що скінченно зображувальний модуль над k-категорією (який можна зв'язати з матричною задачею, стовпцеві перетворення якої задаються модульною структурою, рядкові довільні та існують лише скінченне число матриць канонічного вигляду) має мультиплікатний базис.
We study the minimality of the elements χh,j,kχh,j,k of the canonical system of root vectors.
|
|---|---|
| ISSN: | 1027-3190 |