Densities, submeasures and partitions of groups

In 1995 in Kourovka notebook the second author asked the following problem: is it true that for each partition G=A₁ ∪ ⋯ ∪ An of a group G there is a cell Ai of the partition such that G = FAiA⁻¹i for some set F ⊂ G of cardinality |F |≤ n? In this paper we survey several partial solutions of this pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2014
Hauptverfasser: Banakh, T., Protasov, I., Slobodianiuk, S.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2014
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/153328
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Densities, submeasures and partitions of groups / T. Banakh, I. Protasov, S. Slobodianiuk // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 2. — С. 193–221. — Бібліогр.: 25 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-153328
record_format dspace
spelling Banakh, T.
Protasov, I.
Slobodianiuk, S.
2019-06-14T03:21:10Z
2019-06-14T03:21:10Z
2014
Densities, submeasures and partitions of groups / T. Banakh, I. Protasov, S. Slobodianiuk // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 2. — С. 193–221. — Бібліогр.: 25 назв. — англ.
1726-3255
2010 MSC:05E15, 05D10, 28C10.
https://nasplib.isofts.kiev.ua/handle/123456789/153328
In 1995 in Kourovka notebook the second author asked the following problem: is it true that for each partition G=A₁ ∪ ⋯ ∪ An of a group G there is a cell Ai of the partition such that G = FAiA⁻¹i for some set F ⊂ G of cardinality |F |≤ n? In this paper we survey several partial solutions of this problem, in particular those involving certain canonical invariant densities and submeasures on groups. In particular, we show that for any partition G = A₁ ∪ ⋯ ∪ An of a group G there are cells Ai, Aj of the partition such that G = FAjA⁻¹j for some finite set F ⊂ G of cardinality |F| ≤ max₀<k≤n ∑ⁿ⁻kp₌₀kp ≤ n!; G = F ⋅ ⋃x∈ExAiA⁻¹ix⁻¹ for some finite sets F, E ⊂ G with |F| ≤ n; G = FAiA⁻¹iAi for some finite set F ⊂ G of cardinality |F| ≤ n; the set (AiA⁻¹i)⁴ⁿ⁻¹ is a subgroup of index ≤ n in G. The last three statements are derived from the corresponding density results.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Densities, submeasures and partitions of groups
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Densities, submeasures and partitions of groups
spellingShingle Densities, submeasures and partitions of groups
Banakh, T.
Protasov, I.
Slobodianiuk, S.
title_short Densities, submeasures and partitions of groups
title_full Densities, submeasures and partitions of groups
title_fullStr Densities, submeasures and partitions of groups
title_full_unstemmed Densities, submeasures and partitions of groups
title_sort densities, submeasures and partitions of groups
author Banakh, T.
Protasov, I.
Slobodianiuk, S.
author_facet Banakh, T.
Protasov, I.
Slobodianiuk, S.
publishDate 2014
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description In 1995 in Kourovka notebook the second author asked the following problem: is it true that for each partition G=A₁ ∪ ⋯ ∪ An of a group G there is a cell Ai of the partition such that G = FAiA⁻¹i for some set F ⊂ G of cardinality |F |≤ n? In this paper we survey several partial solutions of this problem, in particular those involving certain canonical invariant densities and submeasures on groups. In particular, we show that for any partition G = A₁ ∪ ⋯ ∪ An of a group G there are cells Ai, Aj of the partition such that G = FAjA⁻¹j for some finite set F ⊂ G of cardinality |F| ≤ max₀<k≤n ∑ⁿ⁻kp₌₀kp ≤ n!; G = F ⋅ ⋃x∈ExAiA⁻¹ix⁻¹ for some finite sets F, E ⊂ G with |F| ≤ n; G = FAiA⁻¹iAi for some finite set F ⊂ G of cardinality |F| ≤ n; the set (AiA⁻¹i)⁴ⁿ⁻¹ is a subgroup of index ≤ n in G. The last three statements are derived from the corresponding density results.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/153328
citation_txt Densities, submeasures and partitions of groups / T. Banakh, I. Protasov, S. Slobodianiuk // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 2. — С. 193–221. — Бібліогр.: 25 назв. — англ.
work_keys_str_mv AT banakht densitiessubmeasuresandpartitionsofgroups
AT protasovi densitiessubmeasuresandpartitionsofgroups
AT slobodianiuks densitiessubmeasuresandpartitionsofgroups
first_indexed 2025-11-30T14:14:44Z
last_indexed 2025-11-30T14:14:44Z
_version_ 1850857839238578176