A geometrical interpretation of infinite wreath powers
A geometrical construction based on an infinite tree graph is suggested to illustrate the concept of infinite wreath powers of P.Hall. We use techniques based on infinite wreath powers and on this geometrical constriction to build a 2-generator group which is not soluble, but in which the normal clo...
Saved in:
| Published in: | Algebra and Discrete Mathematics |
|---|---|
| Date: | 2014 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2014
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/153333 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | A geometrical interpretation of infinite wreath powers / V.H. Mikaelian // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 2. — С. 250–267. — Бібліогр.: 27 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-153333 |
|---|---|
| record_format |
dspace |
| spelling |
Mikaelian, V.H. 2019-06-14T03:22:22Z 2019-06-14T03:22:22Z 2014 A geometrical interpretation of infinite wreath powers / V.H. Mikaelian // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 2. — С. 250–267. — Бібліогр.: 27 назв. — англ. 1726-3255 2010 MSC:20E08, 20E22, 20F16. https://nasplib.isofts.kiev.ua/handle/123456789/153333 A geometrical construction based on an infinite tree graph is suggested to illustrate the concept of infinite wreath powers of P.Hall. We use techniques based on infinite wreath powers and on this geometrical constriction to build a 2-generator group which is not soluble, but in which the normal closure of one of the generators is locally soluble. The author was supported in part by SCS RA, joint Armenian-Russian research project 13RF-030 and by State Committee Science MES RA grant in frame of project 13-1A246. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics A geometrical interpretation of infinite wreath powers Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
A geometrical interpretation of infinite wreath powers |
| spellingShingle |
A geometrical interpretation of infinite wreath powers Mikaelian, V.H. |
| title_short |
A geometrical interpretation of infinite wreath powers |
| title_full |
A geometrical interpretation of infinite wreath powers |
| title_fullStr |
A geometrical interpretation of infinite wreath powers |
| title_full_unstemmed |
A geometrical interpretation of infinite wreath powers |
| title_sort |
geometrical interpretation of infinite wreath powers |
| author |
Mikaelian, V.H. |
| author_facet |
Mikaelian, V.H. |
| publishDate |
2014 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
A geometrical construction based on an infinite tree graph is suggested to illustrate the concept of infinite wreath powers of P.Hall. We use techniques based on infinite wreath powers and on this geometrical constriction to build a 2-generator group which is not soluble, but in which the normal closure of one of the generators is locally soluble.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/153333 |
| citation_txt |
A geometrical interpretation of infinite wreath powers / V.H. Mikaelian // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 2. — С. 250–267. — Бібліогр.: 27 назв. — англ. |
| work_keys_str_mv |
AT mikaelianvh ageometricalinterpretationofinfinitewreathpowers AT mikaelianvh geometricalinterpretationofinfinitewreathpowers |
| first_indexed |
2025-12-01T14:20:28Z |
| last_indexed |
2025-12-01T14:20:28Z |
| _version_ |
1850860422850150400 |