A new characterization of alternating groups

Let G be a finite group and let πe(G) be the set of element orders of G. Let k ∈ πe(G) and let mk be the number of elements of order k in G. Set nse(G):={mk|k ∈ πe(G)}. In this paper, we show that if n= r, r + 1, r + 2, r + 3 r + 4, or r + 5 where r ≥ 5 is the greatest prime not exceeding n, then An...

Full description

Saved in:
Bibliographic Details
Published in:Algebra and Discrete Mathematics
Date:2014
Main Authors: Asboei, A.K., Amiri, S.S., Iranmanesh, A.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2014
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/153342
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:A new characterization of alternating groups / A.K. Asboei, S.S. Amiri, A. Iranmanesh // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 1. — С. 8–13. — Бібліогр.: 11 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-153342
record_format dspace
spelling Asboei, A.K.
Amiri, S.S.
Iranmanesh, A.
2019-06-14T03:25:07Z
2019-06-14T03:25:07Z
2014
A new characterization of alternating groups / A.K. Asboei, S.S. Amiri, A. Iranmanesh // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 1. — С. 8–13. — Бібліогр.: 11 назв. — англ.
1726-3255
2010 MSC:20D06, 20D60.
https://nasplib.isofts.kiev.ua/handle/123456789/153342
Let G be a finite group and let πe(G) be the set of element orders of G. Let k ∈ πe(G) and let mk be the number of elements of order k in G. Set nse(G):={mk|k ∈ πe(G)}. In this paper, we show that if n= r, r + 1, r + 2, r + 3 r + 4, or r + 5 where r ≥ 5 is the greatest prime not exceeding n, then An characterizable by nse and order.
The authors are thankful to the referee for carefully reading the paper and for his suggestions and remarks. Partial support by the Center of Excellence of Algebraic Hyper structures and its Applications of Tarbiat Modares University (CEAHA) is gratefully acknowledge by the third author (AI).
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
A new characterization of alternating groups
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title A new characterization of alternating groups
spellingShingle A new characterization of alternating groups
Asboei, A.K.
Amiri, S.S.
Iranmanesh, A.
title_short A new characterization of alternating groups
title_full A new characterization of alternating groups
title_fullStr A new characterization of alternating groups
title_full_unstemmed A new characterization of alternating groups
title_sort new characterization of alternating groups
author Asboei, A.K.
Amiri, S.S.
Iranmanesh, A.
author_facet Asboei, A.K.
Amiri, S.S.
Iranmanesh, A.
publishDate 2014
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description Let G be a finite group and let πe(G) be the set of element orders of G. Let k ∈ πe(G) and let mk be the number of elements of order k in G. Set nse(G):={mk|k ∈ πe(G)}. In this paper, we show that if n= r, r + 1, r + 2, r + 3 r + 4, or r + 5 where r ≥ 5 is the greatest prime not exceeding n, then An characterizable by nse and order.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/153342
citation_txt A new characterization of alternating groups / A.K. Asboei, S.S. Amiri, A. Iranmanesh // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 1. — С. 8–13. — Бібліогр.: 11 назв. — англ.
work_keys_str_mv AT asboeiak anewcharacterizationofalternatinggroups
AT amiriss anewcharacterizationofalternatinggroups
AT iranmanesha anewcharacterizationofalternatinggroups
AT asboeiak newcharacterizationofalternatinggroups
AT amiriss newcharacterizationofalternatinggroups
AT iranmanesha newcharacterizationofalternatinggroups
first_indexed 2025-12-07T16:28:05Z
last_indexed 2025-12-07T16:28:05Z
_version_ 1850867591796490240