On weakly semisimple derivations of the polynomial ring in two variables

Let K be an algebraically closed field of characteristic zero and K[x, y] the polynomial ring. Every element f ∈ K[x, y] determines the Jacobian derivation Df of K[x, y] by the rule Df(h) = detJ(f, h), where J(f, h) is the Jacobian matrix of the polynomials f and h. A polynomial f is called weakly s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2014
Hauptverfasser: Gavran, V.S., Stepukh, V.V.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2014
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/153346
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On weakly semisimple derivations of the polynomial ring in two variables / V.S. Gavran, V.V. Stepukh // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 1. — С. 50–58. — Бібліогр.: 7 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Let K be an algebraically closed field of characteristic zero and K[x, y] the polynomial ring. Every element f ∈ K[x, y] determines the Jacobian derivation Df of K[x, y] by the rule Df(h) = detJ(f, h), where J(f, h) is the Jacobian matrix of the polynomials f and h. A polynomial f is called weakly semisimple if there exists a polynomial g such that Df(g) = λg for some nonzero λ ∈ K. Ten years ago, Y. Stein posed a problem of describing all weakly semisimple polynomials (such a description would characterize all two dimensional nonabelian subalgebras of the Lie algebra of all derivations of K[x, y] with zero divergence). We give such a description for polynomials f with the separated variables, i.e. which are of the form: f(x, y) = f₁(x)f₂(y) for some f₁(t), f₂(t) ∈ K[t].
ISSN:1726-3255