On weakly semisimple derivations of the polynomial ring in two variables

Let K be an algebraically closed field of characteristic zero and K[x, y] the polynomial ring. Every element f ∈ K[x, y] determines the Jacobian derivation Df of K[x, y] by the rule Df(h) = detJ(f, h), where J(f, h) is the Jacobian matrix of the polynomials f and h. A polynomial f is called weakly s...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Algebra and Discrete Mathematics
Дата:2014
Автори: Gavran, V.S., Stepukh, V.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2014
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/153346
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On weakly semisimple derivations of the polynomial ring in two variables / V.S. Gavran, V.V. Stepukh // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 1. — С. 50–58. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-153346
record_format dspace
spelling Gavran, V.S.
Stepukh, V.V.
2019-06-14T03:25:55Z
2019-06-14T03:25:55Z
2014
On weakly semisimple derivations of the polynomial ring in two variables / V.S. Gavran, V.V. Stepukh // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 1. — С. 50–58. — Бібліогр.: 7 назв. — англ.
1726-3255
2010 MSC:13N15; 13N99.
https://nasplib.isofts.kiev.ua/handle/123456789/153346
Let K be an algebraically closed field of characteristic zero and K[x, y] the polynomial ring. Every element f ∈ K[x, y] determines the Jacobian derivation Df of K[x, y] by the rule Df(h) = detJ(f, h), where J(f, h) is the Jacobian matrix of the polynomials f and h. A polynomial f is called weakly semisimple if there exists a polynomial g such that Df(g) = λg for some nonzero λ ∈ K. Ten years ago, Y. Stein posed a problem of describing all weakly semisimple polynomials (such a description would characterize all two dimensional nonabelian subalgebras of the Lie algebra of all derivations of K[x, y] with zero divergence). We give such a description for polynomials f with the separated variables, i.e. which are of the form: f(x, y) = f₁(x)f₂(y) for some f₁(t), f₂(t) ∈ K[t].
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
On weakly semisimple derivations of the polynomial ring in two variables
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On weakly semisimple derivations of the polynomial ring in two variables
spellingShingle On weakly semisimple derivations of the polynomial ring in two variables
Gavran, V.S.
Stepukh, V.V.
title_short On weakly semisimple derivations of the polynomial ring in two variables
title_full On weakly semisimple derivations of the polynomial ring in two variables
title_fullStr On weakly semisimple derivations of the polynomial ring in two variables
title_full_unstemmed On weakly semisimple derivations of the polynomial ring in two variables
title_sort on weakly semisimple derivations of the polynomial ring in two variables
author Gavran, V.S.
Stepukh, V.V.
author_facet Gavran, V.S.
Stepukh, V.V.
publishDate 2014
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description Let K be an algebraically closed field of characteristic zero and K[x, y] the polynomial ring. Every element f ∈ K[x, y] determines the Jacobian derivation Df of K[x, y] by the rule Df(h) = detJ(f, h), where J(f, h) is the Jacobian matrix of the polynomials f and h. A polynomial f is called weakly semisimple if there exists a polynomial g such that Df(g) = λg for some nonzero λ ∈ K. Ten years ago, Y. Stein posed a problem of describing all weakly semisimple polynomials (such a description would characterize all two dimensional nonabelian subalgebras of the Lie algebra of all derivations of K[x, y] with zero divergence). We give such a description for polynomials f with the separated variables, i.e. which are of the form: f(x, y) = f₁(x)f₂(y) for some f₁(t), f₂(t) ∈ K[t].
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/153346
citation_txt On weakly semisimple derivations of the polynomial ring in two variables / V.S. Gavran, V.V. Stepukh // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 1. — С. 50–58. — Бібліогр.: 7 назв. — англ.
work_keys_str_mv AT gavranvs onweaklysemisimplederivationsofthepolynomialringintwovariables
AT stepukhvv onweaklysemisimplederivationsofthepolynomialringintwovariables
first_indexed 2025-12-07T17:44:34Z
last_indexed 2025-12-07T17:44:34Z
_version_ 1850872403543982080