Effective ring
In this paper we will investigate commutative Bezout domains whose finite homomorphic images are semipotent rings. Among such commutative Bezout rings we consider a new class of rings and call them an effective rings. Furthermore we prove that effective rings are elementary divisor rings.
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2014 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2014
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/153352 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Effective ring / B.V. Zabavsky, B.M. Kuznitska // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 1. — С. 149–156. — Бібліогр.: 7 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-153352 |
|---|---|
| record_format |
dspace |
| spelling |
Zabavsky, B.V. Kuznitska, B.M. 2019-06-14T03:27:32Z 2019-06-14T03:27:32Z 2014 Effective ring / B.V. Zabavsky, B.M. Kuznitska // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 1. — С. 149–156. — Бібліогр.: 7 назв. — англ. 1726-3255 2010 MSC:13F99. https://nasplib.isofts.kiev.ua/handle/123456789/153352 In this paper we will investigate commutative Bezout domains whose finite homomorphic images are semipotent rings. Among such commutative Bezout rings we consider a new class of rings and call them an effective rings. Furthermore we prove that effective rings are elementary divisor rings. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics Effective ring Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Effective ring |
| spellingShingle |
Effective ring Zabavsky, B.V. Kuznitska, B.M. |
| title_short |
Effective ring |
| title_full |
Effective ring |
| title_fullStr |
Effective ring |
| title_full_unstemmed |
Effective ring |
| title_sort |
effective ring |
| author |
Zabavsky, B.V. Kuznitska, B.M. |
| author_facet |
Zabavsky, B.V. Kuznitska, B.M. |
| publishDate |
2014 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
In this paper we will investigate commutative Bezout domains whose finite homomorphic images are semipotent rings. Among such commutative Bezout rings we consider a new class of rings and call them an effective rings. Furthermore we prove that effective rings are elementary divisor rings.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/153352 |
| citation_txt |
Effective ring / B.V. Zabavsky, B.M. Kuznitska // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 1. — С. 149–156. — Бібліогр.: 7 назв. — англ. |
| work_keys_str_mv |
AT zabavskybv effectivering AT kuznitskabm effectivering |
| first_indexed |
2025-12-07T19:38:25Z |
| last_indexed |
2025-12-07T19:38:25Z |
| _version_ |
1850879566967472128 |