Balleans of bounded geometry and G-spaces

A ballean (or a coarse structure) is a set endowed with some family of subsets which are called the balls. The properties of the family of balls are postulated in such a way that a ballean can be considered as an asymptotical counterpart of a uniform topological space. We prove that every ballean...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Algebra and Discrete Mathematics
Дата:2008
Автор: Protasov, I.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2008
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/153361
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Balleans of bounded geometry and G-spaces / I.V. Protasov // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 2. — С. 101–108. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-153361
record_format dspace
spelling Protasov, I.V.
2019-06-14T03:35:28Z
2019-06-14T03:35:28Z
2008
Balleans of bounded geometry and G-spaces / I.V. Protasov // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 2. — С. 101–108. — Бібліогр.: 8 назв. — англ.
1726-3255
2000 Mathematics Subject Classification: 37B05, 54E15.
https://nasplib.isofts.kiev.ua/handle/123456789/153361
A ballean (or a coarse structure) is a set endowed with some family of subsets which are called the balls. The properties of the family of balls are postulated in such a way that a ballean can be considered as an asymptotical counterpart of a uniform topological space. We prove that every ballean of bounded geometry is coarsely equivalent to a ballean on some set X determined by some group of permutations of X.
Thanks to my daughters.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Balleans of bounded geometry and G-spaces
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Balleans of bounded geometry and G-spaces
spellingShingle Balleans of bounded geometry and G-spaces
Protasov, I.V.
title_short Balleans of bounded geometry and G-spaces
title_full Balleans of bounded geometry and G-spaces
title_fullStr Balleans of bounded geometry and G-spaces
title_full_unstemmed Balleans of bounded geometry and G-spaces
title_sort balleans of bounded geometry and g-spaces
author Protasov, I.V.
author_facet Protasov, I.V.
publishDate 2008
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description A ballean (or a coarse structure) is a set endowed with some family of subsets which are called the balls. The properties of the family of balls are postulated in such a way that a ballean can be considered as an asymptotical counterpart of a uniform topological space. We prove that every ballean of bounded geometry is coarsely equivalent to a ballean on some set X determined by some group of permutations of X.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/153361
citation_txt Balleans of bounded geometry and G-spaces / I.V. Protasov // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 2. — С. 101–108. — Бібліогр.: 8 назв. — англ.
work_keys_str_mv AT protasoviv balleansofboundedgeometryandgspaces
first_indexed 2025-12-07T21:09:51Z
last_indexed 2025-12-07T21:09:51Z
_version_ 1850885318801096704