Balleans of bounded geometry and G-spaces
A ballean (or a coarse structure) is a set endowed with some family of subsets which are called the balls. The properties of the family of balls are postulated in such a way that a ballean can be considered as an asymptotical counterpart of a uniform topological space. We prove that every ballean...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2008 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2008
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/153361 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Balleans of bounded geometry and G-spaces / I.V. Protasov // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 2. — С. 101–108. — Бібліогр.: 8 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-153361 |
|---|---|
| record_format |
dspace |
| spelling |
Protasov, I.V. 2019-06-14T03:35:28Z 2019-06-14T03:35:28Z 2008 Balleans of bounded geometry and G-spaces / I.V. Protasov // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 2. — С. 101–108. — Бібліогр.: 8 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 37B05, 54E15. https://nasplib.isofts.kiev.ua/handle/123456789/153361 A ballean (or a coarse structure) is a set endowed with some family of subsets which are called the balls. The properties of the family of balls are postulated in such a way that a ballean can be considered as an asymptotical counterpart of a uniform topological space. We prove that every ballean of bounded geometry is coarsely equivalent to a ballean on some set X determined by some group of permutations of X. Thanks to my daughters. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics Balleans of bounded geometry and G-spaces Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Balleans of bounded geometry and G-spaces |
| spellingShingle |
Balleans of bounded geometry and G-spaces Protasov, I.V. |
| title_short |
Balleans of bounded geometry and G-spaces |
| title_full |
Balleans of bounded geometry and G-spaces |
| title_fullStr |
Balleans of bounded geometry and G-spaces |
| title_full_unstemmed |
Balleans of bounded geometry and G-spaces |
| title_sort |
balleans of bounded geometry and g-spaces |
| author |
Protasov, I.V. |
| author_facet |
Protasov, I.V. |
| publishDate |
2008 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
A ballean (or a coarse structure) is a set endowed with some family of subsets which are called the balls. The properties of the family of balls are postulated in such a way that a ballean can be considered as an asymptotical counterpart of a uniform topological space.
We prove that every ballean of bounded geometry is coarsely equivalent to a ballean on some set X
determined by some group of permutations of X.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/153361 |
| citation_txt |
Balleans of bounded geometry and G-spaces / I.V. Protasov // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 2. — С. 101–108. — Бібліогр.: 8 назв. — англ. |
| work_keys_str_mv |
AT protasoviv balleansofboundedgeometryandgspaces |
| first_indexed |
2025-12-07T21:09:51Z |
| last_indexed |
2025-12-07T21:09:51Z |
| _version_ |
1850885318801096704 |