Algebra in superextensions of groups, I: zeros and commutativity

Given a group X we study the algebraic structure of its superextension λ(X). This is a right-topological semigroup consisting of all maximal linked systems on X endowed with the operation A∘B={C⊂X:{x∈X:x−1C∈B}∈A} that extends the group operation of X. We characterize right zeros of...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Algebra and Discrete Mathematics
Дата:2008
Автори: Banakh, T.T., Gavrylkiv, V., Nykyforchyn, O.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2008
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/153373
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Algebra in superextensions of groups, I: zeros and commutativity / T.T. Banakh, V. Gavrylkiv, O. Nykyforchyn // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 3. — С. 1–29. — Бібліогр.: 13 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-153373
record_format dspace
spelling Banakh, T.T.
Gavrylkiv, V.
Nykyforchyn, O.
2019-06-14T03:39:46Z
2019-06-14T03:39:46Z
2008
Algebra in superextensions of groups, I: zeros and commutativity / T.T. Banakh, V. Gavrylkiv, O. Nykyforchyn // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 3. — С. 1–29. — Бібліогр.: 13 назв. — англ.
1726-3255
2000 Mathematics Subject Classification: 20M99, 54B20.
https://nasplib.isofts.kiev.ua/handle/123456789/153373
Given a group X we study the algebraic structure of its superextension λ(X). This is a right-topological semigroup consisting of all maximal linked systems on X endowed with the operation A∘B={C⊂X:{x∈X:x−1C∈B}∈A} that extends the group operation of X. We characterize right zeros of λ(X) as invariant maximal linked systems on X and prove that λ(X) has a right zero if and only if each element of X has odd order. On the other hand, the semigroup λ(X) contains a left zero if and only if it contains a zero if and only if X has odd order |X|≤5. The semigroup λ(X) is commutative if and only if |X|≤4. We finish the paper with a complete description of the algebraic structure of the semigroups λ(X) for all groups X of cardinality |X|≤5.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Algebra in superextensions of groups, I: zeros and commutativity
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Algebra in superextensions of groups, I: zeros and commutativity
spellingShingle Algebra in superextensions of groups, I: zeros and commutativity
Banakh, T.T.
Gavrylkiv, V.
Nykyforchyn, O.
title_short Algebra in superextensions of groups, I: zeros and commutativity
title_full Algebra in superextensions of groups, I: zeros and commutativity
title_fullStr Algebra in superextensions of groups, I: zeros and commutativity
title_full_unstemmed Algebra in superextensions of groups, I: zeros and commutativity
title_sort algebra in superextensions of groups, i: zeros and commutativity
author Banakh, T.T.
Gavrylkiv, V.
Nykyforchyn, O.
author_facet Banakh, T.T.
Gavrylkiv, V.
Nykyforchyn, O.
publishDate 2008
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description Given a group X we study the algebraic structure of its superextension λ(X). This is a right-topological semigroup consisting of all maximal linked systems on X endowed with the operation A∘B={C⊂X:{x∈X:x−1C∈B}∈A} that extends the group operation of X. We characterize right zeros of λ(X) as invariant maximal linked systems on X and prove that λ(X) has a right zero if and only if each element of X has odd order. On the other hand, the semigroup λ(X) contains a left zero if and only if it contains a zero if and only if X has odd order |X|≤5. The semigroup λ(X) is commutative if and only if |X|≤4. We finish the paper with a complete description of the algebraic structure of the semigroups λ(X) for all groups X of cardinality |X|≤5.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/153373
citation_txt Algebra in superextensions of groups, I: zeros and commutativity / T.T. Banakh, V. Gavrylkiv, O. Nykyforchyn // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 3. — С. 1–29. — Бібліогр.: 13 назв. — англ.
work_keys_str_mv AT banakhtt algebrainsuperextensionsofgroupsizerosandcommutativity
AT gavrylkivv algebrainsuperextensionsofgroupsizerosandcommutativity
AT nykyforchyno algebrainsuperextensionsofgroupsizerosandcommutativity
first_indexed 2025-12-07T18:50:59Z
last_indexed 2025-12-07T18:50:59Z
_version_ 1850876582429720576