Algebra in superextensions of groups, I: zeros and commutativity
Given a group X we study the algebraic structure of its superextension λ(X). This is a right-topological semigroup consisting of all maximal linked systems on X endowed with the operation A∘B={C⊂X:{x∈X:x−1C∈B}∈A} that extends the group operation of X. We characterize right zeros of...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2008 |
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2008
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/153373 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Algebra in superextensions of groups, I: zeros and commutativity / T.T. Banakh, V. Gavrylkiv, O. Nykyforchyn // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 3. — С. 1–29. — Бібліогр.: 13 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-153373 |
|---|---|
| record_format |
dspace |
| spelling |
Banakh, T.T. Gavrylkiv, V. Nykyforchyn, O. 2019-06-14T03:39:46Z 2019-06-14T03:39:46Z 2008 Algebra in superextensions of groups, I: zeros and commutativity / T.T. Banakh, V. Gavrylkiv, O. Nykyforchyn // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 3. — С. 1–29. — Бібліогр.: 13 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 20M99, 54B20. https://nasplib.isofts.kiev.ua/handle/123456789/153373 Given a group X we study the algebraic structure of its superextension λ(X). This is a right-topological semigroup consisting of all maximal linked systems on X endowed with the operation A∘B={C⊂X:{x∈X:x−1C∈B}∈A} that extends the group operation of X. We characterize right zeros of λ(X) as invariant maximal linked systems on X and prove that λ(X) has a right zero if and only if each element of X has odd order. On the other hand, the semigroup λ(X) contains a left zero if and only if it contains a zero if and only if X has odd order |X|≤5. The semigroup λ(X) is commutative if and only if |X|≤4. We finish the paper with a complete description of the algebraic structure of the semigroups λ(X) for all groups X of cardinality |X|≤5. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics Algebra in superextensions of groups, I: zeros and commutativity Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Algebra in superextensions of groups, I: zeros and commutativity |
| spellingShingle |
Algebra in superextensions of groups, I: zeros and commutativity Banakh, T.T. Gavrylkiv, V. Nykyforchyn, O. |
| title_short |
Algebra in superextensions of groups, I: zeros and commutativity |
| title_full |
Algebra in superextensions of groups, I: zeros and commutativity |
| title_fullStr |
Algebra in superextensions of groups, I: zeros and commutativity |
| title_full_unstemmed |
Algebra in superextensions of groups, I: zeros and commutativity |
| title_sort |
algebra in superextensions of groups, i: zeros and commutativity |
| author |
Banakh, T.T. Gavrylkiv, V. Nykyforchyn, O. |
| author_facet |
Banakh, T.T. Gavrylkiv, V. Nykyforchyn, O. |
| publishDate |
2008 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
Given a group X we study the algebraic structure of its superextension λ(X). This is a right-topological semigroup consisting of all maximal linked systems on X
endowed with the operation
A∘B={C⊂X:{x∈X:x−1C∈B}∈A}
that extends the group operation of X. We characterize right zeros of λ(X) as invariant maximal linked systems on X and prove that λ(X) has a right zero if and only if each element of X has odd order. On the other hand, the semigroup λ(X) contains a left zero if and only if it contains a zero if and only if X has odd order |X|≤5. The semigroup λ(X) is commutative if and only if |X|≤4. We finish the paper with a complete description of the algebraic structure of the semigroups λ(X) for all groups X of cardinality |X|≤5.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/153373 |
| citation_txt |
Algebra in superextensions of groups, I: zeros and commutativity / T.T. Banakh, V. Gavrylkiv, O. Nykyforchyn // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 3. — С. 1–29. — Бібліогр.: 13 назв. — англ. |
| work_keys_str_mv |
AT banakhtt algebrainsuperextensionsofgroupsizerosandcommutativity AT gavrylkivv algebrainsuperextensionsofgroupsizerosandcommutativity AT nykyforchyno algebrainsuperextensionsofgroupsizerosandcommutativity |
| first_indexed |
2025-12-07T18:50:59Z |
| last_indexed |
2025-12-07T18:50:59Z |
| _version_ |
1850876582429720576 |