Prime radical of Ore extensions over δ -rigid rings
Let R be a ring. Let σ be an automorphism of R and δ be a σ-derivation of R. We say that R is a δ-rigid ring if aδ(a)∈P(R) implies a∈P(R), a∈R; where P(R) is the prime radical of R. In this article, we find a relation between the prime radical of a δ-rigid ring R and that of R[x,σ,δ]. We generalize...
Saved in:
| Published in: | Algebra and Discrete Mathematics |
|---|---|
| Date: | 2009 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2009
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/153379 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Prime radical of Ore extensions over δ -rigid rings / V.K. Bhat // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 1. — С. 14–19. — Бібліогр.: 13 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | Let R be a ring. Let σ be an automorphism of R and δ be a σ-derivation of R. We say that R is a δ-rigid ring if aδ(a)∈P(R) implies a∈P(R), a∈R; where P(R) is the prime radical of R. In this article, we find a relation between the prime radical of a δ-rigid ring R and that of R[x,σ,δ]. We generalize the result for a Noetherian Q-algebra (Q is the field of rational numbers).
|
|---|---|
| ISSN: | 1726-3255 |