Jamming and percolation of parallel squares in single-cluster growth model

This work studies the jamming and percolation of parallel squares in a single-cluster growth model. The Leath-Alexandrowicz method was used to grow a cluster from an active seed site. The sites of a square lattice were occupied by addition of the equal size k x k squares (E-problem) or a mixture of...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Kriuchevskyi, I.A., Bulavin, L.A., Tarasevich, Yu.Yu., Lebovka, N.I.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2014
Назва видання:Condensed Matter Physics
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/153448
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Jamming and percolation of parallel squares in single-cluster growth model / I.A. Kriuchevskyi, L.A. Bulavin, Yu.Yu. Tarasevich, N.I. Lebovka // Condensed Matter Physics. — 2014. — Т. 17, № 3. — С. 33006:1-11. — Бібліогр.: 42 назв.— англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-153448
record_format dspace
fulltext
spelling nasplib_isofts_kiev_ua-123456789-1534482025-02-09T11:51:32Z Jamming and percolation of parallel squares in single-cluster growth model Джамiнг та перколяцiя паралельних квадратiв в однокластернiй моделi росту Kriuchevskyi, I.A. Bulavin, L.A. Tarasevich, Yu.Yu. Lebovka, N.I. This work studies the jamming and percolation of parallel squares in a single-cluster growth model. The Leath-Alexandrowicz method was used to grow a cluster from an active seed site. The sites of a square lattice were occupied by addition of the equal size k x k squares (E-problem) or a mixture of k x k and m x m (m ≤ k) squares (M-problem). The larger k x k squares were assumed to be active (conductive) and the smaller m x m squares were assumed to be blocked (non-conductive). For equal size k x k squares (E-problem) the value of pj = 0.638 ± 0.001 was obtained for the jamming concentration in the limit of k →∞. This value was noticeably larger than that previously reported for a random sequential adsorption model, pj = 0.564 ± 0.002. It was observed that the value of percolation threshold pc (i.e., the ratio of the area of active k x k squares and the total area of k x k squares in the percolation point) increased with an increase of k. For mixture of k x k and m x m squares (M-problem), the value of pc noticeably increased with an increase of k at a fixed value of m and approached 1 at k ≥ 10 m. This reflects that percolation of larger active squares in M-problem can be effectively suppressed in the presence of smaller blocked squares. В роботi вивчено явища джамiнгу i перколяцiї паралельних квадратiв для однокластерної моделi росту. Для росту кластеру з активного зародку використовувався метод Лiса-Александровича. Вузли квадратної ґратки займалися додаванням однакових k ×k квадратiв (E-задача) або сумiшi k ×k i m ×m (m É k) квадратiв (M-задача). Припускалося, що бiльшi k × k областi були активними (провiдними), а меншi були заблокованими (непровiдними). Для k ×k квадратiв однакового розмiру (E-задача) за умови k → ∞ було отримано таке значення концентрацiї джамiнгу p j = 0.638±0.001 . Це значення було iстотно меншим за отримане ранiше для моделi випадкової послiдовної адсорбцiї: p j = 0.564±0.002. Було показано, що величина перколяцiйного порогу pc (тобто вiдношення площi активних k ×k квадратiв до загальної площi осаджених k × k квадратiв в перколяцiйнiй точцi) зростала при збiльшеннi k. Для сумiшi k × k i m × m квадратiв (M-задача) величина pc сильно зростала при збiльшеннi k при фiксованому значеннi m та наближалась до 1 приk Ê 10m. Це пов’язано з тим, що перколяцiя бiльших активних квадратiв для M-задачi може ефективно пригнiчуватися за наявностi невеликої кiлькостi малих заблокованих квадратiв. Authors would like to acknowledge the partial financial support of project 43–02–14(U), Ukraine (N.L.) and of project RFBR 14–02–90402_Ukr, Russia (Yu.T.). Authors also thank Dr. N.S. Pivovarova for her help with the preparation of the manuscript. 2014 Article Jamming and percolation of parallel squares in single-cluster growth model / I.A. Kriuchevskyi, L.A. Bulavin, Yu.Yu. Tarasevich, N.I. Lebovka // Condensed Matter Physics. — 2014. — Т. 17, № 3. — С. 33006:1-11. — Бібліогр.: 42 назв.— англ. 1607-324X DOI:10.5488/CMP.17.33006 PACS: 02.70.Uu, 05.65.+b, 36.40.Mr, 61.46.Bc, 64.60.ah arXiv:1410.4292 https://nasplib.isofts.kiev.ua/handle/123456789/153448 en Condensed Matter Physics application/pdf Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description This work studies the jamming and percolation of parallel squares in a single-cluster growth model. The Leath-Alexandrowicz method was used to grow a cluster from an active seed site. The sites of a square lattice were occupied by addition of the equal size k x k squares (E-problem) or a mixture of k x k and m x m (m ≤ k) squares (M-problem). The larger k x k squares were assumed to be active (conductive) and the smaller m x m squares were assumed to be blocked (non-conductive). For equal size k x k squares (E-problem) the value of pj = 0.638 ± 0.001 was obtained for the jamming concentration in the limit of k →∞. This value was noticeably larger than that previously reported for a random sequential adsorption model, pj = 0.564 ± 0.002. It was observed that the value of percolation threshold pc (i.e., the ratio of the area of active k x k squares and the total area of k x k squares in the percolation point) increased with an increase of k. For mixture of k x k and m x m squares (M-problem), the value of pc noticeably increased with an increase of k at a fixed value of m and approached 1 at k ≥ 10 m. This reflects that percolation of larger active squares in M-problem can be effectively suppressed in the presence of smaller blocked squares.
format Article
author Kriuchevskyi, I.A.
Bulavin, L.A.
Tarasevich, Yu.Yu.
Lebovka, N.I.
spellingShingle Kriuchevskyi, I.A.
Bulavin, L.A.
Tarasevich, Yu.Yu.
Lebovka, N.I.
Jamming and percolation of parallel squares in single-cluster growth model
Condensed Matter Physics
author_facet Kriuchevskyi, I.A.
Bulavin, L.A.
Tarasevich, Yu.Yu.
Lebovka, N.I.
author_sort Kriuchevskyi, I.A.
title Jamming and percolation of parallel squares in single-cluster growth model
title_short Jamming and percolation of parallel squares in single-cluster growth model
title_full Jamming and percolation of parallel squares in single-cluster growth model
title_fullStr Jamming and percolation of parallel squares in single-cluster growth model
title_full_unstemmed Jamming and percolation of parallel squares in single-cluster growth model
title_sort jamming and percolation of parallel squares in single-cluster growth model
publisher Інститут фізики конденсованих систем НАН України
publishDate 2014
url https://nasplib.isofts.kiev.ua/handle/123456789/153448
citation_txt Jamming and percolation of parallel squares in single-cluster growth model / I.A. Kriuchevskyi, L.A. Bulavin, Yu.Yu. Tarasevich, N.I. Lebovka // Condensed Matter Physics. — 2014. — Т. 17, № 3. — С. 33006:1-11. — Бібліогр.: 42 назв.— англ.
series Condensed Matter Physics
work_keys_str_mv AT kriuchevskyiia jammingandpercolationofparallelsquaresinsingleclustergrowthmodel
AT bulavinla jammingandpercolationofparallelsquaresinsingleclustergrowthmodel
AT tarasevichyuyu jammingandpercolationofparallelsquaresinsingleclustergrowthmodel
AT lebovkani jammingandpercolationofparallelsquaresinsingleclustergrowthmodel
AT kriuchevskyiia džamingtaperkolâciâparalelʹnihkvadrativvodnoklasternijmodelirostu
AT bulavinla džamingtaperkolâciâparalelʹnihkvadrativvodnoklasternijmodelirostu
AT tarasevichyuyu džamingtaperkolâciâparalelʹnihkvadrativvodnoklasternijmodelirostu
AT lebovkani džamingtaperkolâciâparalelʹnihkvadrativvodnoklasternijmodelirostu
first_indexed 2025-11-25T22:33:38Z
last_indexed 2025-11-25T22:33:38Z
_version_ 1849803427281895424