The phase transition of the first order in the critical region of the gas-liquid system

This is a summarising investigation of the events of the phase transition of the first order that occur in the critical region below the liquid-gas critical point. The grand partition function has been completely integrated in the phase-space of the collective variables. The basic density measure is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Condensed Matter Physics
Datum:2014
1. Verfasser: Yukhnovskii, I.R.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут фізики конденсованих систем НАН України 2014
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/153454
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The phase transition of the first order in the critical region of the gas-liquid system / I.R. Yukhnovskii // Condensed Matter Physics. — 2014. — Т. 17, № 4. — С. 43001: 1–27. — Бібліогр.: 17 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-153454
record_format dspace
spelling Yukhnovskii, I.R.
2019-06-14T10:28:29Z
2019-06-14T10:28:29Z
2014
The phase transition of the first order in the critical region of the gas-liquid system / I.R. Yukhnovskii // Condensed Matter Physics. — 2014. — Т. 17, № 4. — С. 43001: 1–27. — Бібліогр.: 17 назв. — англ.
1607-324X
PACS: 05.70.Jk, 64.70.F-, 64.60.F-
DOI:10.5488/CMP.17.43001
arXiv:1501.02325
https://nasplib.isofts.kiev.ua/handle/123456789/153454
This is a summarising investigation of the events of the phase transition of the first order that occur in the critical region below the liquid-gas critical point. The grand partition function has been completely integrated in the phase-space of the collective variables. The basic density measure is the quartic one. It has the form of the exponent function with the first, second, third and fourth degree of the collective variables. The problem has been reduced to the Ising model in an external field, the role of which is played by the generalised chemical potential μ*. The line μ*(η) =0, where η is the density, is the line of the phase transition. We consider the isothermal compression of the gas till the point where the phase transition on the line μ*(η) =0 is reached. When the path of the pressing reaches the line μ* =0 in the gas medium, a droplet of liquid springs up. The work for its formation is obtained, the surface-tension energy is calculated. On the line μ* =0 we have a two-phase system: the gas and the liquid (the droplet) one. The equality of the gas and of the liquid chemical potentials is proved. The process of pressing is going on. But the pressure inside the system has stopped, two fixed densities have arisen: one for the gas-phase ηG=ηc(1-d/2) and the other for the liquid-phase ηL=ηc(1+d/2) (symmetrically to the rectlinear diameter), where ηc=0.13044 is the critical density. Starting from that moment the external pressure works as a latent work of pressure. Its value is obtained. As a result, the gas-phase disappears and the whole system turns into liquid. The jump of the density is equal to ηc d, where d=√D/2G ~ τν/². D and G are coefficients of the Hamiltonian in the last cell connected with the renormalisation-group symmetry. The equation of state is written.
Розглядається поведiнка системи взаємодiючих частинок в областi температур нижче критичної точки T É Tc. Завершується розрахунок великої статистичної суми, початий у попереднiх роботах у методi колективних змiнних. За базову густину мiри береться четвiрний (а не Гаусовий) розподiл. Описанi подiї пов’язанi з фазовим переходом 1-го роду, що вiдбуваються в результатi iзотермiчного квазiстатичного стиснення газу. Видiлена лiнiя µ ∗(η) = 0, на якiй у газовiй фазi пiд дiєю тиску виникає крапля рiдини. Має мiсце рiвнiсть хiмiчних потенцiалiв газової i рiдкої (у краплi) фаз; знайдено величину поверхневої енергiї краплi, розраховано скриту роботу конденсацiї, визначено скачок густини, написано рiвняння стану. Робота становить певну кiнцеву стадiю дослiджень в областi температур i густин, що включає у собi критичну точку рiдина–газ.
The author expresses his gratitude to I.M. Mryglod and O.L. Ivankiv for help, to M.P. Kozlovskii and all the researchers of the Department of the Statistical Theory of Condensed Matter for useful discussions; to O.V. Patsahan for the data on the property of the parameter ∆ in the critical region; to A.D. Trokhimchuk for discussions concerning the short-range order in condensed systems; to Yu.V. Holovach for proofreading the paper and consistent remarks. Our special thanks go to R. Romanik for valuable considerations and the graphs, and to V.O. Kolomiets for collaboration.
en
Інститут фізики конденсованих систем НАН України
Condensed Matter Physics
The phase transition of the first order in the critical region of the gas-liquid system
Фазовий перехiд 1-го роду в областi критичної точки газ–рiдина
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The phase transition of the first order in the critical region of the gas-liquid system
spellingShingle The phase transition of the first order in the critical region of the gas-liquid system
Yukhnovskii, I.R.
title_short The phase transition of the first order in the critical region of the gas-liquid system
title_full The phase transition of the first order in the critical region of the gas-liquid system
title_fullStr The phase transition of the first order in the critical region of the gas-liquid system
title_full_unstemmed The phase transition of the first order in the critical region of the gas-liquid system
title_sort phase transition of the first order in the critical region of the gas-liquid system
author Yukhnovskii, I.R.
author_facet Yukhnovskii, I.R.
publishDate 2014
language English
container_title Condensed Matter Physics
publisher Інститут фізики конденсованих систем НАН України
format Article
title_alt Фазовий перехiд 1-го роду в областi критичної точки газ–рiдина
description This is a summarising investigation of the events of the phase transition of the first order that occur in the critical region below the liquid-gas critical point. The grand partition function has been completely integrated in the phase-space of the collective variables. The basic density measure is the quartic one. It has the form of the exponent function with the first, second, third and fourth degree of the collective variables. The problem has been reduced to the Ising model in an external field, the role of which is played by the generalised chemical potential μ*. The line μ*(η) =0, where η is the density, is the line of the phase transition. We consider the isothermal compression of the gas till the point where the phase transition on the line μ*(η) =0 is reached. When the path of the pressing reaches the line μ* =0 in the gas medium, a droplet of liquid springs up. The work for its formation is obtained, the surface-tension energy is calculated. On the line μ* =0 we have a two-phase system: the gas and the liquid (the droplet) one. The equality of the gas and of the liquid chemical potentials is proved. The process of pressing is going on. But the pressure inside the system has stopped, two fixed densities have arisen: one for the gas-phase ηG=ηc(1-d/2) and the other for the liquid-phase ηL=ηc(1+d/2) (symmetrically to the rectlinear diameter), where ηc=0.13044 is the critical density. Starting from that moment the external pressure works as a latent work of pressure. Its value is obtained. As a result, the gas-phase disappears and the whole system turns into liquid. The jump of the density is equal to ηc d, where d=√D/2G ~ τν/². D and G are coefficients of the Hamiltonian in the last cell connected with the renormalisation-group symmetry. The equation of state is written. Розглядається поведiнка системи взаємодiючих частинок в областi температур нижче критичної точки T É Tc. Завершується розрахунок великої статистичної суми, початий у попереднiх роботах у методi колективних змiнних. За базову густину мiри береться четвiрний (а не Гаусовий) розподiл. Описанi подiї пов’язанi з фазовим переходом 1-го роду, що вiдбуваються в результатi iзотермiчного квазiстатичного стиснення газу. Видiлена лiнiя µ ∗(η) = 0, на якiй у газовiй фазi пiд дiєю тиску виникає крапля рiдини. Має мiсце рiвнiсть хiмiчних потенцiалiв газової i рiдкої (у краплi) фаз; знайдено величину поверхневої енергiї краплi, розраховано скриту роботу конденсацiї, визначено скачок густини, написано рiвняння стану. Робота становить певну кiнцеву стадiю дослiджень в областi температур i густин, що включає у собi критичну точку рiдина–газ.
issn 1607-324X
url https://nasplib.isofts.kiev.ua/handle/123456789/153454
citation_txt The phase transition of the first order in the critical region of the gas-liquid system / I.R. Yukhnovskii // Condensed Matter Physics. — 2014. — Т. 17, № 4. — С. 43001: 1–27. — Бібліогр.: 17 назв. — англ.
work_keys_str_mv AT yukhnovskiiir thephasetransitionofthefirstorderinthecriticalregionofthegasliquidsystem
AT yukhnovskiiir fazoviiperehid1goroduvoblastikritičnoítočkigazridina
AT yukhnovskiiir phasetransitionofthefirstorderinthecriticalregionofthegasliquidsystem
first_indexed 2025-12-07T21:10:51Z
last_indexed 2025-12-07T21:10:51Z
_version_ 1850885382403522560