Plasmon resonance sensitivity in fine metal particles

The sensitivity of the wavelength position of the surface plasmon resonances in a prolate and oblate fine metal particles to the refractive index of an embedding solution, a particle shape, and electron temperature is studied theoretically in the framework of different analytical methods. All calcul...

Full description

Saved in:
Bibliographic Details
Published in:Condensed Matter Physics
Date:2014
Main Author: Grigorchuk, N.I.
Format: Article
Language:English
Published: Інститут фізики конденсованих систем НАН України 2014
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/153491
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Plasmon resonance sensitivity in fine metal particles / N.I. Grigorchuk // Condensed Matter Physics. — 2014. — Т. 17, № 1. — С. 13701:1-6. — Бібліогр.: 21 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-153491
record_format dspace
spelling Grigorchuk, N.I.
2019-06-14T10:37:18Z
2019-06-14T10:37:18Z
2014
Plasmon resonance sensitivity in fine metal particles / N.I. Grigorchuk // Condensed Matter Physics. — 2014. — Т. 17, № 1. — С. 13701:1-6. — Бібліогр.: 21 назв. — англ.
1607-324X
PACS: 78.67.-n, 65.80.-g, 73.23.-b, 68.49.Jk, 52.25.Os
arXiv:1403.1518
DOI:10.5488/CMP.17.13701
https://nasplib.isofts.kiev.ua/handle/123456789/153491
The sensitivity of the wavelength position of the surface plasmon resonances in a prolate and oblate fine metal particles to the refractive index of an embedding solution, a particle shape, and electron temperature is studied theoretically in the framework of different analytical methods. All calculations are illustrated on the single potassium nanoparticle as an example.
В рамках рiзних аналiтичних методiв теоретично вивчається чутливiсть положення довжин хвилi резонансiв поверхневого плазмона у витягнутих i сплюснутих малих металевих частинках до показника заломлення оточуючого розчину, форми самої частинки та електронної температури. Всi обчислення проiлюстрованi на прикладi окремої наночастинки калiю.
en
Інститут фізики конденсованих систем НАН України
Condensed Matter Physics
Plasmon resonance sensitivity in fine metal particles
Чутливiсть плазмонних резонансiв у малих металевих частинках
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Plasmon resonance sensitivity in fine metal particles
spellingShingle Plasmon resonance sensitivity in fine metal particles
Grigorchuk, N.I.
title_short Plasmon resonance sensitivity in fine metal particles
title_full Plasmon resonance sensitivity in fine metal particles
title_fullStr Plasmon resonance sensitivity in fine metal particles
title_full_unstemmed Plasmon resonance sensitivity in fine metal particles
title_sort plasmon resonance sensitivity in fine metal particles
author Grigorchuk, N.I.
author_facet Grigorchuk, N.I.
publishDate 2014
language English
container_title Condensed Matter Physics
publisher Інститут фізики конденсованих систем НАН України
format Article
title_alt Чутливiсть плазмонних резонансiв у малих металевих частинках
description The sensitivity of the wavelength position of the surface plasmon resonances in a prolate and oblate fine metal particles to the refractive index of an embedding solution, a particle shape, and electron temperature is studied theoretically in the framework of different analytical methods. All calculations are illustrated on the single potassium nanoparticle as an example. В рамках рiзних аналiтичних методiв теоретично вивчається чутливiсть положення довжин хвилi резонансiв поверхневого плазмона у витягнутих i сплюснутих малих металевих частинках до показника заломлення оточуючого розчину, форми самої частинки та електронної температури. Всi обчислення проiлюстрованi на прикладi окремої наночастинки калiю.
issn 1607-324X
url https://nasplib.isofts.kiev.ua/handle/123456789/153491
citation_txt Plasmon resonance sensitivity in fine metal particles / N.I. Grigorchuk // Condensed Matter Physics. — 2014. — Т. 17, № 1. — С. 13701:1-6. — Бібліогр.: 21 назв. — англ.
work_keys_str_mv AT grigorchukni plasmonresonancesensitivityinfinemetalparticles
AT grigorchukni čutlivistʹplazmonnihrezonansivumalihmetalevihčastinkah
first_indexed 2025-11-25T20:31:27Z
last_indexed 2025-11-25T20:31:27Z
_version_ 1850524221419028480
fulltext Condensed Matter Physics, 2014, Vol. 17, No 1, 13701: 1–6 DOI: 10.5488/CMP.17.13701 http://www.icmp.lviv.ua/journal Plasmon resonance sensitivity in fine metal particle N.I. Grigorchuk Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, 14-b Metrologichna St., 03680 Kyiv, Ukraine Received September 26, 2013, in final form November 4, 2013 The sensitivity of the wavelength position of surface plasmon resonances in prolate and oblate fine metal par- ticles to the refractive index of an embedding solution, a particle shape, and electron temperature is studied theoretically in the framework of different analytical methods. All calculations are illustrated on the single potas- sium nanoparticle as an example. Key words: sensitivity, surface plasmon resonance, fine metal particles PACS: 78.67.-n, 65.80.-g, 73.23.-b, 68.49.Jk, 52.25.Os The wavelength, intensity, and shift of the surface plasmon resonance (SPR) [1] of fine metal particles (MPs) are sensitive to changes in different physical parameters. The possibility to measure the optical ef- fects with the refractive index variation has been often used to detect changes in the surroundingmedium for chemical sensing or for probing the dynamics of biological molecules [2]. An important group of op- tical sensors is based on exploiting SPR to detect small refractive index changes in close proximity to the sensing surface of MPs [3–11] and are associated with a biomolecule sensing [8, 9]. Several authors have demonstrated, on the example of noble nanoparticles, how the SPR position depends on the environment and themorphology of nanoparticles [3–5, 7]. Much less attention has been paid to the study of sensitivity modes of a spheroidal MP with a small effect of a core polarization, where the contribution of the bound electrons can be neglected (e.g., K, Na, Be, Al, etc). In this Letter, using the new approach specifying the nanoparticle shape, we propose the expressions for calculation of the plasmonic sensitivity to the changes in the main factors that significantly affect the position of the SPR modes on the example of potassium nanoparticle. 1. The MPs considered are small in size relative to the wavelength of light. If we change the refractive index of the embedding medium n by a definite value, ±n, the sensitivity can be expressed in frequency units as S j ,! (n)Æ �! j ,res /�n. The resonance frequency (or the corresponding wavelength) for nonspher- ical MP is given by [4] ! j ,res Æ!pl . q " 1 Å (1/L j ¡1)n 2 , (1) ¸ j ,res Ƹpl q " 1 Å (1/L j ¡1)n 2 , (2) where the Drude model with Re(") ' " 1 ¡! 2 pl/! 2 is used, !pl is the plasma frequency, " 1 is the high frequency dielectric constant, and L j refers to the Osborn’s demagnetizing factors [12] in j -th direction. We have restricted ourselves to the MPs with a spheroidal shape. Then, variables L k and L ? will play the roles of longitudinal (directed along the revolution axis of a spheroid) and transverse (directed across this axis) components of the L factor. Since Osborn’s factors are somewhat cumbersome to be used directly, they can be changed with a high accuracy by the following relations L k Æ 1 (1ÅR k /R ? ) z , L ? Æ 1 2 ¡ 1¡L k ¢ , (3) where z Æ log3/log2, R k and R ? are the spheroid semiaxes directed along and across the revolution axis of a spheroid, correspondingly. © N.I. Grigorchuk, 2014 13701-1 http://dx.doi.org/10.5488/CMP.17.13701 http://www.icmp.lviv.ua/journal N.I. Grigorchuk Equation (2) describes the change in the SPR wavelength when the factors L j or refractive index are changed. Figure 1 depicts the result of calculations for a rodlike potassium nanoparticle. One can see that the SPR peak wavelength ¸ res (normalized by plasma wavelength ¸ pl Æ 2822 Å for K) linearly depends on n, and is shifted to the red spectral side as n is increased. Physically, this implies that the Coulomb attractive force between an electronic cloud and a positive metal lattice is weakened with n and the energy of SPR is reduced. The linear increase of SPR peak with n retains for different values of the aspect ratio R k /R ? (´ a/b Æ x). Only the line slope changes: it enhances for MPs with larger aspect ratios. From the slope of the linear fit, the refractive index sensitivity �¸res/�n was calculated to be 256 nm per refractive index unit (RIU) for S ? and 380 nm per RIU for S k , with “golden” x Æ 1.618, or to be 205 nm/RIU for S ? and 2100 nm/RIU for S k , with x Æ 16.18. A tenfold increase of the potassium particle aspect ratio enhances the S k -sensitivity to the changes in the refractive index roughly 5 times. Higher spheroid aspect ratio supports both the k-SPR mode at a longer wavelength and the ?-mode at a rather shorter wavelength. One can see that the k-plasmon mode is much more sensitive to the change in the refractive index than the transverse mode. 2 4 6 8 0 20 40 60 80 Refractive Index , n re s p l λ / λ ⊥ || || Κ Figure 1. (Color online) SPR peak wavelength modes (k and?) position as a function of medium refractive index for prolate potassium nanoparticle with different aspect ratios: R k /R ? = 1.618 (thick lines) and = 16.18 (thin lines). 2. By an analogy with the previous case, the sensitivity to the changes in the aspect ratio of a spheroidal nanoparticle x can be expressed in frequency units as S j ,! (x)Æ �! j ,res/�x. Using equations (1) and (2) in the determination of sensitivity, one obtains S j ,! (x)Æ n!pl[1/L j (x)¡1℄ © " 1 Ån 2 [1/L j (x)¡1℄ ª 3/2 , (4) or S j ,¸ (x)Æ n¸ pl [1/L j (x)¡1℄ q " 1 Ån 2 [1/L j (x)¡1℄ . (5) We can see that the sensitivity of the SPR to the medium can be enhanced by tuning the morphology of the nanoparticle [3–5, 7]. The shape factor L j (x), which governs the geometric tunability of the SPR, also determines the plasmon sensitivity of nanoparticles. It is easy to find those values of L j for which the sensitivity S j (x) becomes maximal. They can be expressed in the wavelength or frequency units by means of expressions L k,¸ Æ n 2 n 2 ¡2" 1 , L k,! Æ n 2 n 2 Å2" 1 (6) for a maximal longitudinal component of the S k , or L ?,! Æ 2" 1 ¡n 2 2" 1 Ån 2 (7) 13701-2 Plasmon resonance sensitivity in fine metal particle for a maximal transverse component of the S ? . Only a few MPs and dielectric media conform to the first of the two equation (6). For this reason, we propose somewhat different approach. The derivative �¸res/�n can be represented as a derivative of a composite function �¸res �n Æ �¸res �" 0 �" 0 �n , (8) where "0 is the real part of a particle dielectric function. In the high frequency limit of dielectric function, ¸res is ¸res Ƹpl p " 1 ¡" 0 . (9) From the plasmon resonance condition " 0 Æ¡(1/L j ¡1)n 2 , (10) and finally, we get �¸ j ,res �n Æ ¸ 2 pl ¸ j ,res (1/L j ¡1)n. (11) In the case of MP having a spherical form, the factor L j should be put equal to 1/3 in all the above equations. 3. Some experimental studies [3–5, 10, 13–16] were carried out on metal nanoparticles with different geometry to find the best nanoparticle configuration to enhance the sensitivity of the SPR response. Let us theoretically find the best geometrical factors L j to enhance the sensitivity of the SPR response for MPs with a spheroidal shape. To define the spheroid shape which provides the maximal sensitivity, one can use the following relations: ¡ R k /R ? ¢ long Æ ¡ L k,! ¢ ¡1/z ¡1, (12) ¡ R k /R ? ¢ trans Æ ¡ L ?,! ¢ ¡1/z ¡1, (13) for longitudinal and transverse components, correspondingly. 0 2 4 6 8 10 0.0 0.2 0.4 0.6 0.8 1.0 A x i a l r a t i o , R / R Sω ( eV / A R U ) K|| ⊥ ⊥ || 0 2 4 6 8 10 0.0 0.2 0.4 0.6 0.8 A x i a l r a t io , R / R S ω (e V / A R U ) || ⊥ Au ⊥ || Figure 2. (Color online) Dependence of the sensitivity of the plasmon resonance components (longitudinal — solid line and transverse — dashed line) vs semiaxial ratio for spheroidal potassium nanoparticle embedded in the SiO 2 matrix (n Æ 1.56). The inset shows the same dependence for Au nanoparticle embedded in the water. For instance, if we take the Au nanoparticle with " 1 Æ 9.84 [10] embedded in water (n Æ 1.33), then from the second equation (6) and equation (7), we obtain L ! ' 0.082 for k and L ! ' 0.835 for ? com- ponents, which enable us to get from equations (12) and (13) the maxima at (R k /R ? )long Æ 3.76 and at (R k /R ? )trans Æ 0.12. 13701-3 N.I. Grigorchuk Figure 2 shows the dependence of plasmon sensitivity components on the axial ratio (in axial ratio units (ARU)) calculated for the potassium nanoparticle with " 1 Æ 1.24 [17]. We have found that the max- imal sensitivity can be realized at the axial ratio (R ? /R k )long ' 2 for S k , and at (R ? /R k )trans ' 0 for S ? . The inset in figure 2 displays the same dependence S E (x) for Au nanoparticle. Maximal sensitivities are attained for Au at (R ? /R k )long ' 0.26 and (R ? /R k )trans ' 8.5 for S k and S ? , correspondingly. Such quanti- ties of maximal sensitivities for potassium and Au nanoparticles can be obtained from equations (12) and (13) as well. The data in figure 2 for prolate and oblate potassium and Au nanoparticles display a clear evidence of the spectral shift of the both components S k and S ? as a function of spheroidal axial ratios. Such a behavior of both S(x) components is far from the linear one predicted, e.g., in [3] for the single Au nanorod. 2 4 6 8 2 3 4 5 A x i a l r a t io , R / R re s p l ⊥ || ||⊥ λ / λ K 0.0 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 T / F re s p l λ / λ T ⊥ || Κ Figure 3. (Color online) The SPR peak wavelength components (k and ?) as a function of the spheroid axial ratio for potassium nanoparticle embedded in the SiO 2 matrix. The inset shows ¸res(T ) for potas- sium nanoparticle (with x Æ 1.62) embedded in the SiO 2 matrix. For potassium the Fermi temperature is TF Æ 2.46£10 4 K [17] and electron concentration is n 0 =1.4£1022 [17]. In figure 3 the dependence of the ratio ¸res/¸pl versus spheroid axial ratio is depicted. As it is seen in this figure, when the aspect ratio for rodlike potassium nanoparticle increases, the k-component of the peak of the SPR wavelength ¸res exhibits a blue shift, whereas its ?-component exhibits a red shift. For oblate potassium nanoparticle, vice versa, with an increase of the semiaxial ratioR ? /R k , the k-component of the SPR wavelength shifts to the red side, whereas its ?-component shifts to the blue side. From the slope of the linear dependence of ¸ ?,res on the axial ratio, the shape sensitivity �¸res/�x becomes roughly as high as 84 nm/ARU for S ? . 4. To characterize the thermal stability of the photonic crystal devices, the study of their thermal sensitivity is very important [18–20]. It can be expressed in wavelength units as S j ,¸ (T )Æ �¸ j ,res/�T . The temperature dependence of ¸res(T ) comes from the T -dependence of the electron concentration inside the MP [21] ne(T )Æn 0 · 1Å ¼ 2 8 µ kBT ¹ 0 ¶ 2 ¸ , (14) where ¹ 0 Æ ¹(T Æ 0) is chemical potential at zero temperature and n 0 Æ (2m¹ 0 ) 3/2 /3¼ 2 ß 3. Combining these equations with ¸pl(T )Æ 2¼ / p 4¼ne(T )e 2 /m and equation (2), we obtain ¸ j ,res(T )'¸ pl (0) v u u t " 1 Å (1/L j ¡1)n 2 1Å (¼ 2 /8) ¡ kBT /¹ 0 ¢ 2 . (15) 13701-4 Plasmon resonance sensitivity in fine metal particle Therefore, S j ,¸ (T )'¸ pl (0) ¼ 2 8 q " 1 Å (1/L j ¡1)n 2 h 1Å (¼ 2 /8) ¡ kBT /¹ 0 ¢ 2 i 3/2 µ kB ¹ 0 ¶ 2 T. (16) Equations (15) and (16) allow one to estimate the shift of SPR wavelength position with temperature and the temperature sensitivity for any ellipsoidal MPs. It is easy to see from equation (15) and from the inset in figure 3 that the value of ¸res is shifted with T to the shorter wavelength side, which agrees well with the results of works [19, 20]. In summary, we propose the formulae that enable one to evaluate the plasmonic sensitivity to the changes in the main factors considerably affected the SPR mode position in MPs. For prolate (oblate) potassium and Au nanoparticles, there was found a nonlinear behavior of both sensitivity components (S k and S ? ) as a function of an axial ratio. The effect of the temperature variation on the plasmon sensi- tivity was demonstrated on the example of a potassium nanoparticle. References 1. Mayergoyz I.D., Plasmon Resonances in Nanoparticles, World Scientific, Singapore, 2013. 2. Mayer K.M., Lee S., Liao H., Rostro B.C., Fuentes A, Scully P.T., Nehl C.L., Hafner J.H., ACS Nano, 2008, 2, 687; doi:10.1021/nn7003734. 3. Lee K.-S., El-Sayed M.A., J. Phys. Chem. B, 2006, 110, 19220; doi:10.1021/jp062536y. 4. Becker J., Trügler A., Jakab A., Hohenester U., Sönnichsen C., Plasmonics, 2010, 5, 161; doi:10.1007/s11468-010-9130-2. 5. Miller M.M., Lazarides A.A., J. Opt. A: Pure Appl. Opt., 2006, 8, S239; doi:10.1088/1464-4258/8/4/S26. 6. Tetz K.A., Pang L., Fainman Y., Optics Lett., 2006, 31, 1528; doi:10.1364/OL.31.001528. 7. Mock J.J., Smith D.R., Schultz S., Nano Lett., 2003, 3, 485; doi:10.1021/nl0340475. 8. Haes A.J., Zou S.L., Schatz G.C., Van Duyne R.P., J. Phys. Chem. B, 2004, 108, 6961; doi:10.1021/jp036261n. 9. Otte M.A., Sepúlveda B., Ni W., Juste J.P., Liz-Marzán L.M., Lechuga L.M., ACS Nano, 2010, 4, 349; doi:10.1021/nn901024e. 10. Cao M., Wang M., Gu N., J. Phys. Chem. C, 2009, 113, 1217; doi:10.1021/jp808000x. 11. Grigorchuk N.I., J. Phys. Chem. C, 2012, 116, 23704; doi:10.1021/jp3067074. 12. Osborn J.A., Phys. Rev., 1945, 67, 351; doi:10.1103/PhysRev.67.351. 13. Karakouz T., Holder D., Goomanovsky M., Vaskevich A., Rubinstein I., Chem. Mater., 2009, 21, 5875; doi:10.1021/cm902676d. 14. Sau T.K., Rogach A.L., Jäckel F., Klar T.A., Feldmann J., Adv. Mater., 2010, 22, 1805; doi:10.1002/adma.200902557. 15. Chen H., Kou X., Yang Z., Ni W., Wang J., Langmuir, 2008, 24, 5233; doi:10.1021/la800305j. 16. Kelly K.L., Coronado E., Zhao L.L., Schatz G.C., J. Phys. Chem. B, 2003, 107, 668; doi:10.1021/jp026731y. 17. Kittel Ch., Introduction to Solid State Physics, Wiley, New York, 1986. 18. Florous N.J., Saitoh K., Koshiba M., IEEE Trans. Nanotechnol., 2007, 6, 549; doi:10.1109/TNANO.2007.901187. 19. Dalacu D., Martinu L., Appl. Phys. Lett., 2000, 77, 4283; doi:10.1063/1.1334362. 20. Yeshchenko O.A., Bondarchuk I.S., Alexeenko A.A., Kotko A.V., Functional Materials, 2013, 20, 357. 21. Levich V.G., Course of Theoretical Physics, Vol.1, Nauka, Moskow, 1969 (in Russian). 13701-5 http://dx.doi.org/10.1021/nn7003734 http://dx.doi.org/10.1021/jp062536y http://dx.doi.org/10.1007/s11468-010-9130-2 http://dx.doi.org/10.1088/1464-4258/8/4/S26 http://dx.doi.org/10.1364/OL.31.001528 http://dx.doi.org/10.1021/nl0340475 http://dx.doi.org/10.1021/jp036261n http://dx.doi.org/10.1021/nn901024e http://dx.doi.org/10.1021/jp808000x http://dx.doi.org/10.1021/jp3067074 http://dx.doi.org/10.1103/PhysRev.67.351 http://dx.doi.org/10.1021/cm902676d http://dx.doi.org/10.1002/adma.200902557 http://dx.doi.org/10.1021/la800305j http://dx.doi.org/10.1021/jp026731y http://dx.doi.org/10.1109/TNANO.2007.901187 http://dx.doi.org/10.1063/1.1334362 N.I. Grigorchuk Чутливiсть плазмонних резонансiв у малих металевих частинках М.I. Григорчук Iнститут теоретичної фiзики iм. М.М. Боголюбова НАН України, вул. Метрологiчна, 14-б, 03680 Київ, Україна В рамках рiзних аналiтичних методiв теоретично вивчається чутливiсть положення довжин хвилi ре- зонансiв поверхневого плазмона у витягнутих i сплюснутих малих металевих частинках до показника заломлення оточуючого розчину, форми самої частинки та електронної температури. Всi обчислення проiлюстрованi на прикладi окремої наночастинки калiю. Ключовi слова: чутливiсть, поверхневий плазмонний резонанс, малi металевi частинки 13701-6