Спектр оператора монодромии для одного разностного уравнения с непрерывным временем
Для скалярного, линейного, периодического, разностного уравнения с непрерывным временем изучен спектр оператора монодромии в пространстве L²[−ω,0]. Показано, что спектральное множество является кольцом на комплексной плоскости с центром в нулевой точке. Точки внутренности кольца являются собственным...
Збережено в:
| Опубліковано в: : | Український математичний журнал |
|---|---|
| Дата: | 1987 |
| Автор: | |
| Формат: | Стаття |
| Мова: | Russian |
| Опубліковано: |
Інститут математики НАН України
1987
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/154003 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Спектр оператора монодромии для одного разностного уравнения с непрерывным временем / Ю.Ф. Долгий // Український математичний журнал. — 1987. — Т. 39, № 2. — С. 250–255. — Бібліогр.: 8 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | Для скалярного, линейного, периодического, разностного уравнения с непрерывным временем изучен спектр оператора монодромии в пространстве L²[−ω,0]. Показано, что спектральное множество является кольцом на комплексной плоскости с центром в нулевой точке. Точки внутренности кольца являются собственными значениями оператора монодромии, а точки границы — точками непрерывного спектра. Это кольцо содержит внутри себя окружность, которая совпадает со спектральным множеством оператора монодромии, действующим в пространстве C[−ω,0].
|
|---|---|
| ISSN: | 1027-3190 |