A commutative Bezout PM* domain is an elementary divisor ring
We prove that any commutative Bezout PM∗ domain is an elementary divisor ring.
Saved in:
| Published in: | Algebra and Discrete Mathematics |
|---|---|
| Date: | 2015 |
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2015
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/154247 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | A commutative Bezout PM* domain is an elementary divisor ring / B. Zabavsky, A. Gatalevych // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 295–301. — Бібліогр.: 12 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-154247 |
|---|---|
| record_format |
dspace |
| spelling |
Zabavsky, B. Gatalevych, A. 2019-06-15T11:28:37Z 2019-06-15T11:28:37Z 2015 A commutative Bezout PM* domain is an elementary divisor ring / B. Zabavsky, A. Gatalevych // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 295–301. — Бібліогр.: 12 назв. — англ. 1726-3255 2010 MSC:13F99. https://nasplib.isofts.kiev.ua/handle/123456789/154247 We prove that any commutative Bezout PM∗ domain is an elementary divisor ring. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics A commutative Bezout PM* domain is an elementary divisor ring Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
A commutative Bezout PM* domain is an elementary divisor ring |
| spellingShingle |
A commutative Bezout PM* domain is an elementary divisor ring Zabavsky, B. Gatalevych, A. |
| title_short |
A commutative Bezout PM* domain is an elementary divisor ring |
| title_full |
A commutative Bezout PM* domain is an elementary divisor ring |
| title_fullStr |
A commutative Bezout PM* domain is an elementary divisor ring |
| title_full_unstemmed |
A commutative Bezout PM* domain is an elementary divisor ring |
| title_sort |
commutative bezout pm* domain is an elementary divisor ring |
| author |
Zabavsky, B. Gatalevych, A. |
| author_facet |
Zabavsky, B. Gatalevych, A. |
| publishDate |
2015 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
We prove that any commutative Bezout PM∗ domain is an elementary divisor ring.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/154247 |
| citation_txt |
A commutative Bezout PM* domain is an elementary divisor ring / B. Zabavsky, A. Gatalevych // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 295–301. — Бібліогр.: 12 назв. — англ. |
| work_keys_str_mv |
AT zabavskyb acommutativebezoutpmdomainisanelementarydivisorring AT gatalevycha acommutativebezoutpmdomainisanelementarydivisorring AT zabavskyb commutativebezoutpmdomainisanelementarydivisorring AT gatalevycha commutativebezoutpmdomainisanelementarydivisorring |
| first_indexed |
2025-12-07T19:03:53Z |
| last_indexed |
2025-12-07T19:03:53Z |
| _version_ |
1850877393579802624 |