A commutative Bezout PM* domain is an elementary divisor ring

We prove that any commutative Bezout PM∗ domain is an elementary divisor ring.

Saved in:
Bibliographic Details
Published in:Algebra and Discrete Mathematics
Date:2015
Main Authors: Zabavsky, B., Gatalevych, A.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2015
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/154247
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:A commutative Bezout PM* domain is an elementary divisor ring / B. Zabavsky, A. Gatalevych // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 295–301. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-154247
record_format dspace
spelling Zabavsky, B.
Gatalevych, A.
2019-06-15T11:28:37Z
2019-06-15T11:28:37Z
2015
A commutative Bezout PM* domain is an elementary divisor ring / B. Zabavsky, A. Gatalevych // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 295–301. — Бібліогр.: 12 назв. — англ.
1726-3255
2010 MSC:13F99.
https://nasplib.isofts.kiev.ua/handle/123456789/154247
We prove that any commutative Bezout PM∗ domain is an elementary divisor ring.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
A commutative Bezout PM* domain is an elementary divisor ring
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title A commutative Bezout PM* domain is an elementary divisor ring
spellingShingle A commutative Bezout PM* domain is an elementary divisor ring
Zabavsky, B.
Gatalevych, A.
title_short A commutative Bezout PM* domain is an elementary divisor ring
title_full A commutative Bezout PM* domain is an elementary divisor ring
title_fullStr A commutative Bezout PM* domain is an elementary divisor ring
title_full_unstemmed A commutative Bezout PM* domain is an elementary divisor ring
title_sort commutative bezout pm* domain is an elementary divisor ring
author Zabavsky, B.
Gatalevych, A.
author_facet Zabavsky, B.
Gatalevych, A.
publishDate 2015
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description We prove that any commutative Bezout PM∗ domain is an elementary divisor ring.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/154247
citation_txt A commutative Bezout PM* domain is an elementary divisor ring / B. Zabavsky, A. Gatalevych // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 295–301. — Бібліогр.: 12 назв. — англ.
work_keys_str_mv AT zabavskyb acommutativebezoutpmdomainisanelementarydivisorring
AT gatalevycha acommutativebezoutpmdomainisanelementarydivisorring
AT zabavskyb commutativebezoutpmdomainisanelementarydivisorring
AT gatalevycha commutativebezoutpmdomainisanelementarydivisorring
first_indexed 2025-12-07T19:03:53Z
last_indexed 2025-12-07T19:03:53Z
_version_ 1850877393579802624