Projectivity and flatness over the graded ring of normalizing elements
Let k be a field, H a cocommutative bialgebra, A a commutative left H-module algebra, Hom(H,A) the $k$-algebra of the k-linear maps from H to A under the convolution product, Z(H,A) the submonoid of Hom(H,A) whose elements satisfy the cocycle condition and G any subgroup of the monoid Z(H,A). We giv...
Gespeichert in:
| Veröffentlicht in: | Algebra and Discrete Mathematics |
|---|---|
| Datum: | 2015 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2015
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/154259 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Projectivity and flatness over the graded ring of normalizing elements / T. Guédénon // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 172-192 . — Бібліогр.: 14 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-154259 |
|---|---|
| record_format |
dspace |
| spelling |
Guédénon, T. 2019-06-15T12:01:00Z 2019-06-15T12:01:00Z 2015 Projectivity and flatness over the graded ring of normalizing elements / T. Guédénon // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 172-192 . — Бібліогр.: 14 назв. — англ. 1726-3255 2010 MSC:16D40, 16W50, 16W30. https://nasplib.isofts.kiev.ua/handle/123456789/154259 Let k be a field, H a cocommutative bialgebra, A a commutative left H-module algebra, Hom(H,A) the $k$-algebra of the k-linear maps from H to A under the convolution product, Z(H,A) the submonoid of Hom(H,A) whose elements satisfy the cocycle condition and G any subgroup of the monoid Z(H,A). We give necessary and sufficient conditions for the projectivity and flatness over the graded ring of normalizing elements of A. When A is not necessarily commutative we obtain similar results over the graded ring of weakly semi-invariants of A replacing Z(H,A) by the set χ(H,Z(A)H) of all algebra maps from H to Z(A)H, where Z(A) is the center of A. The author is grateful to the referee for his or her interesting remarksand helpful suggestions. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics Projectivity and flatness over the graded ring of normalizing elements Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Projectivity and flatness over the graded ring of normalizing elements |
| spellingShingle |
Projectivity and flatness over the graded ring of normalizing elements Guédénon, T. |
| title_short |
Projectivity and flatness over the graded ring of normalizing elements |
| title_full |
Projectivity and flatness over the graded ring of normalizing elements |
| title_fullStr |
Projectivity and flatness over the graded ring of normalizing elements |
| title_full_unstemmed |
Projectivity and flatness over the graded ring of normalizing elements |
| title_sort |
projectivity and flatness over the graded ring of normalizing elements |
| author |
Guédénon, T. |
| author_facet |
Guédénon, T. |
| publishDate |
2015 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
Let k be a field, H a cocommutative bialgebra, A a commutative left H-module algebra, Hom(H,A) the $k$-algebra of the k-linear maps from H to A under the convolution product, Z(H,A) the submonoid of Hom(H,A) whose elements satisfy the cocycle condition and G any subgroup of the monoid Z(H,A). We give necessary and sufficient conditions for the projectivity and flatness over the graded ring of normalizing elements of A. When A is not necessarily commutative we obtain similar results over the graded ring of weakly semi-invariants of A replacing Z(H,A) by the set χ(H,Z(A)H) of all algebra maps from H to Z(A)H, where Z(A) is the center of A.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/154259 |
| citation_txt |
Projectivity and flatness over the graded ring of normalizing elements / T. Guédénon // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 172-192 . — Бібліогр.: 14 назв. — англ. |
| work_keys_str_mv |
AT guedenont projectivityandflatnessoverthegradedringofnormalizingelements |
| first_indexed |
2025-12-07T19:46:50Z |
| last_indexed |
2025-12-07T19:46:50Z |
| _version_ |
1850880096579092480 |