Projectivity and flatness over the graded ring of normalizing elements

Let k be a field, H a cocommutative bialgebra, A a commutative left H-module algebra, Hom(H,A) the $k$-algebra of the k-linear maps from H to A under the convolution product, Z(H,A) the submonoid of Hom(H,A) whose elements satisfy the cocycle condition and G any subgroup of the monoid Z(H,A). We giv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2015
1. Verfasser: Guédénon, T.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2015
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/154259
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Projectivity and flatness over the graded ring of normalizing elements / T. Guédénon // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 172-192 . — Бібліогр.: 14 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-154259
record_format dspace
spelling Guédénon, T.
2019-06-15T12:01:00Z
2019-06-15T12:01:00Z
2015
Projectivity and flatness over the graded ring of normalizing elements / T. Guédénon // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 172-192 . — Бібліогр.: 14 назв. — англ.
1726-3255
2010 MSC:16D40, 16W50, 16W30.
https://nasplib.isofts.kiev.ua/handle/123456789/154259
Let k be a field, H a cocommutative bialgebra, A a commutative left H-module algebra, Hom(H,A) the $k$-algebra of the k-linear maps from H to A under the convolution product, Z(H,A) the submonoid of Hom(H,A) whose elements satisfy the cocycle condition and G any subgroup of the monoid Z(H,A). We give necessary and sufficient conditions for the projectivity and flatness over the graded ring of normalizing elements of A. When A is not necessarily commutative we obtain similar results over the graded ring of weakly semi-invariants of A replacing Z(H,A) by the set χ(H,Z(A)H) of all algebra maps from H to Z(A)H, where Z(A) is the center of A.
The author is grateful to the referee for his or her interesting remarksand helpful suggestions.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Projectivity and flatness over the graded ring of normalizing elements
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Projectivity and flatness over the graded ring of normalizing elements
spellingShingle Projectivity and flatness over the graded ring of normalizing elements
Guédénon, T.
title_short Projectivity and flatness over the graded ring of normalizing elements
title_full Projectivity and flatness over the graded ring of normalizing elements
title_fullStr Projectivity and flatness over the graded ring of normalizing elements
title_full_unstemmed Projectivity and flatness over the graded ring of normalizing elements
title_sort projectivity and flatness over the graded ring of normalizing elements
author Guédénon, T.
author_facet Guédénon, T.
publishDate 2015
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description Let k be a field, H a cocommutative bialgebra, A a commutative left H-module algebra, Hom(H,A) the $k$-algebra of the k-linear maps from H to A under the convolution product, Z(H,A) the submonoid of Hom(H,A) whose elements satisfy the cocycle condition and G any subgroup of the monoid Z(H,A). We give necessary and sufficient conditions for the projectivity and flatness over the graded ring of normalizing elements of A. When A is not necessarily commutative we obtain similar results over the graded ring of weakly semi-invariants of A replacing Z(H,A) by the set χ(H,Z(A)H) of all algebra maps from H to Z(A)H, where Z(A) is the center of A.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/154259
citation_txt Projectivity and flatness over the graded ring of normalizing elements / T. Guédénon // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 172-192 . — Бібліогр.: 14 назв. — англ.
work_keys_str_mv AT guedenont projectivityandflatnessoverthegradedringofnormalizingelements
first_indexed 2025-12-07T19:46:50Z
last_indexed 2025-12-07T19:46:50Z
_version_ 1850880096579092480