Projectivity and flatness over the graded ring of normalizing elements
Let k be a field, H a cocommutative bialgebra, A a commutative left H-module algebra, Hom(H,A) the $k$-algebra of the k-linear maps from H to A under the convolution product, Z(H,A) the submonoid of Hom(H,A) whose elements satisfy the cocycle condition and G any subgroup of the monoid Z(H,A). We giv...
Saved in:
| Published in: | Algebra and Discrete Mathematics |
|---|---|
| Date: | 2015 |
| Main Author: | Guédénon, T. |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2015
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/154259 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Projectivity and flatness over the graded ring of normalizing elements / T. Guédénon // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 172-192 . — Бібліогр.: 14 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Projectivity and flatness over the graded ring of normalizing elements
by: Guédénon, T.
Published: (2015) -
Projectivity and flatness over the graded ring of normalizing elements
by: T. Guedenon
Published: (2015) -
Projectivity and flatness over the graded ring of semi-coinvariants
by: Guedenon, T.
Published: (2018) -
Projectivity and flatness over the graded ring of semi-coinvariants
by: Guedenon, T.
Published: (2018) -
Projectivity and flatness over the graded ring of semi-coinvariants
by: Guedenon, T.
Published: (2010)