Hydrogen sulfide and mitochondria

There are different opinions about the role of hydrogen sulfide (H2S) in catalytic and energy processes, but the biochemistry of all possible effects of H2S is not well studied yet. The enzymatic synthesis of H2S is catalyzed by cystathionine-γ-lyase, cystathionine-β-synthase, cysteine aminotransfer...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Вiopolymers and Cell
Дата:2019
Автори: Gerush, I.V., Ferenchuk, Ye.O.
Формат: Стаття
Мова:English
Опубліковано: Інститут молекулярної біології і генетики НАН України 2019
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/154380
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Hydrogen sulfide and mitochondria / I.V. Gerush, Ye.O. Ferenchuk // Вiopolymers and Cell. — 2019. — Т. 35, № 1. — С. 3-15. — Бібліогр.: 84 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-154380
record_format dspace
spelling Gerush, I.V.
Ferenchuk, Ye.O.
2019-06-15T14:53:42Z
2019-06-15T14:53:42Z
2019
Hydrogen sulfide and mitochondria / I.V. Gerush, Ye.O. Ferenchuk // Вiopolymers and Cell. — 2019. — Т. 35, № 1. — С. 3-15. — Бібліогр.: 84 назв. — англ.
0233-7657
DOI: http://dx.doi.org/10.7124/bc.000998
https://nasplib.isofts.kiev.ua/handle/123456789/154380
577.115+577.122:612.826.33.015.22:616.379-008.64
There are different opinions about the role of hydrogen sulfide (H2S) in catalytic and energy processes, but the biochemistry of all possible effects of H2S is not well studied yet. The enzymatic synthesis of H2S is catalyzed by cystathionine-γ-lyase, cystathionine-β-synthase, cysteine aminotransferase and in mitochondria by 3-mercaptopyruvate sulfurtransferase only. H2S may function as an energy substrate to sustain the ATP synthesis under stress conditions, but in high concentration H2S inhibits respiratory complex IV, blocking electron transport and proton pumping. The interaction between glucose in high concentrtaion, H2S, and the KATP channels may constitute a novel mechanism for the control of insulin secretion. The positive effect of H2S on the bioenergetic function of mitochondria may be used in therapy of many diseases.
Існуть різні дані про роль гідроген судьфіду (H2S) в каталітичних та енергетичних процесах, але біохімічні механізми різноманітних ефектів H2S ще недостатньо вивчені. Ферментативний синтез H2S здійснюється цистатіонін-γ-ліазою, цистатіонін-β-синтазою, цистеїн амінотрансферазою, а в мітохондріях – 3-меркаптопіруват сульфуртрансферазою. H2S може функціонувати як енергетичний субстрат для підтримки синтезу АТФ в умовах стресу, але при високій концентрації молекула інгібує комплекс IV, блокуючи перенесення електронів. Взаємодія між високим рівнем глюкози, сірководнем і KATP-каналами може стати новим механізмом контролю секреції інсуліну, а ефект H2S на біоенергетичну функцію можна застосовувати при ускладненнях багатьох захворювань.
Существуют различные данные о роли сероводорода (H2S) в каталитических и энергетических процессах организма, но биохимические механизмы всевозможных эффектов H2S еще недостаточно изучены. Ферментативный синтез H2S осуществляется цистатионин-γ-лиазой, цистатионин-β-синтазой, цистеин аминотрансферазой, а в митохондриях – 3-меркаптопируват сульфуртрансферазой. H2S может функционировать как энергетический субстрат для поддержания синтеза АТФ в условиях стресса, но в высокой концентрации молекула ингибирует комплекс IV, блокируя перенос электронов. Взаимодействие между высоким уровнем глюкозы, сероводородом и KATP-каналом может стать новым механизмом контроля секреции инсулина, а эффект H2S на биоэнергетическую функцию возможно применять при осложнениях многих заболеваний.
en
Інститут молекулярної біології і генетики НАН України
Вiopolymers and Cell
Reviews
Hydrogen sulfide and mitochondria
Гідроген сульфід і мітохондрія
Сероводород и митохондрия
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Hydrogen sulfide and mitochondria
spellingShingle Hydrogen sulfide and mitochondria
Gerush, I.V.
Ferenchuk, Ye.O.
Reviews
title_short Hydrogen sulfide and mitochondria
title_full Hydrogen sulfide and mitochondria
title_fullStr Hydrogen sulfide and mitochondria
title_full_unstemmed Hydrogen sulfide and mitochondria
title_sort hydrogen sulfide and mitochondria
author Gerush, I.V.
Ferenchuk, Ye.O.
author_facet Gerush, I.V.
Ferenchuk, Ye.O.
topic Reviews
topic_facet Reviews
publishDate 2019
language English
container_title Вiopolymers and Cell
publisher Інститут молекулярної біології і генетики НАН України
format Article
title_alt Гідроген сульфід і мітохондрія
Сероводород и митохондрия
description There are different opinions about the role of hydrogen sulfide (H2S) in catalytic and energy processes, but the biochemistry of all possible effects of H2S is not well studied yet. The enzymatic synthesis of H2S is catalyzed by cystathionine-γ-lyase, cystathionine-β-synthase, cysteine aminotransferase and in mitochondria by 3-mercaptopyruvate sulfurtransferase only. H2S may function as an energy substrate to sustain the ATP synthesis under stress conditions, but in high concentration H2S inhibits respiratory complex IV, blocking electron transport and proton pumping. The interaction between glucose in high concentrtaion, H2S, and the KATP channels may constitute a novel mechanism for the control of insulin secretion. The positive effect of H2S on the bioenergetic function of mitochondria may be used in therapy of many diseases. Існуть різні дані про роль гідроген судьфіду (H2S) в каталітичних та енергетичних процесах, але біохімічні механізми різноманітних ефектів H2S ще недостатньо вивчені. Ферментативний синтез H2S здійснюється цистатіонін-γ-ліазою, цистатіонін-β-синтазою, цистеїн амінотрансферазою, а в мітохондріях – 3-меркаптопіруват сульфуртрансферазою. H2S може функціонувати як енергетичний субстрат для підтримки синтезу АТФ в умовах стресу, але при високій концентрації молекула інгібує комплекс IV, блокуючи перенесення електронів. Взаємодія між високим рівнем глюкози, сірководнем і KATP-каналами може стати новим механізмом контролю секреції інсуліну, а ефект H2S на біоенергетичну функцію можна застосовувати при ускладненнях багатьох захворювань. Существуют различные данные о роли сероводорода (H2S) в каталитических и энергетических процессах организма, но биохимические механизмы всевозможных эффектов H2S еще недостаточно изучены. Ферментативный синтез H2S осуществляется цистатионин-γ-лиазой, цистатионин-β-синтазой, цистеин аминотрансферазой, а в митохондриях – 3-меркаптопируват сульфуртрансферазой. H2S может функционировать как энергетический субстрат для поддержания синтеза АТФ в условиях стресса, но в высокой концентрации молекула ингибирует комплекс IV, блокируя перенос электронов. Взаимодействие между высоким уровнем глюкозы, сероводородом и KATP-каналом может стать новым механизмом контроля секреции инсулина, а эффект H2S на биоэнергетическую функцию возможно применять при осложнениях многих заболеваний.
issn 0233-7657
url https://nasplib.isofts.kiev.ua/handle/123456789/154380
citation_txt Hydrogen sulfide and mitochondria / I.V. Gerush, Ye.O. Ferenchuk // Вiopolymers and Cell. — 2019. — Т. 35, № 1. — С. 3-15. — Бібліогр.: 84 назв. — англ.
work_keys_str_mv AT gerushiv hydrogensulfideandmitochondria
AT ferenchukyeo hydrogensulfideandmitochondria
AT gerushiv gídrogensulʹfídímítohondríâ
AT ferenchukyeo gídrogensulʹfídímítohondríâ
AT gerushiv serovodorodimitohondriâ
AT ferenchukyeo serovodorodimitohondriâ
first_indexed 2025-11-26T02:11:02Z
last_indexed 2025-11-26T02:11:02Z
_version_ 1850608155113816064
fulltext 3 I. V. Gerush, Ye. O. Ferenchuk © 2019 I. V. Gerush et al.; Published by the Institute of Molecular Biology and Genetics, NAS of Ukraine on behalf of Bio- polymers and Cell. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited Reviews ISSN 0233-7657 Biopolymers and Cell. 2019. Vol. 35. N 1. P 3–15 doi: http://dx.doi.org/10.7124/bc.000998 UDC 577.115+577.122:612.826.33.015.22:616.379-008.64 Hydrogen sulfide and mitochondria I. V. Gerush, Ye. O. Ferenchuk Higher State Educational Establishment of Ukraine «Bukovinian State Medical University» 2, Theatralna sq., Chernivtsi, Ukraine, 58002 yelena_f@ukr.net There are different opinions about the role of hydrogen sulfide (H2S) in catalytic and energy processes, but the biochemistry of all possible effects of H2S is not well studied yet. The en- zymatic synthesis of H2S is catalyzed by cystathionine-γ-lyase, cystathionine-β-synthase, cysteine aminotransferase and in mitochondria by 3-mercaptopyruvate sulfurtransferase only. H2S may function as an energy substrate to sustain the ATP synthesis under stress conditions, but in high concentration H2S inhibits respiratory complex IV, blocking electron transport and proton pumping. The interaction between glucose in high concentrtaion, H2S, and the KATP channels may constitute a novel mechanism for the control of insulin secretion. The positive effect of H2S on the bioenergetic function of mitochondria may be used in therapy of many diseases. K e y w o r d s: hydrogen sulfide, mitochondria, bioenergetics. Introduction The knowledge of hydrogen sulfide (H2S) as a potent signaling molecule greatly advanced over the last years, though the biomolecule is known from the very beginning of the life evolution. H2S is the hydrogenated sulfur com- pound with the lowest oxidation state (-2). The description of gas dates back to the 15th cen- tury when it was named “hepatic air” [1]. The first chemical synthesis was performed by Carl Wilhelm Scheele in 1777 by mixing metal sulfides with acid, and in 1796 Claude Louis Berthollet studied its chemical composition. The compound is a flammable, colorless, wa- ter-soluble gas denser than air [2]. There are different opinions about the role of H2S in synthetic, catalytic and energy pro- cesses. The ways of the molecule synthesis in mammals were ascertained in the 1940s. In the 1990s, the data on the modulatory and signa- ling effects of H2S first appeared. H2S repre- sents an inorganic reducing substrate for oxida- tive phosphorylation in mammals [3]. The interest in studying H2S was triggered by its potential importance for health. The attempt to describe the pathways of formation, to de- termine a biological role, to characterize and mailto:yelena_f@ukr.net 4 I. V. Gerush, Ye. O. Ferenchuk explain the physiological effects and to syn- thesize donors of the biomolecule are promis- ing for innovation of the effective pharmaco- logical treatment. H2S has important effects on mitochondria. The biomolecule influences the mitochondrial electron transport chain. And the reactions with metal centers and thiol oxi- dation products are possible mechanisms of these biological effects [4]. Key biochemical questions are the role of H2S in the bioenergetic processes and its influ- ence on the diabetes development and its com- plications. In this review, we give a short over- view of the biological role of H2S in mitochon- dria, the regulation of cellular bioenergetics and the influence on diabetes mellitus. The enzymology of H2S formation In mammals, the endogenous H2S is synthe- sized from homocysteine and cysteine through the enzymes of the transsulfuration pathway. These enzymes are cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE), cysteine aminotransferase (CAT) and 3-mercaptopyru- vate sulfurtransferase (3-MST). CBS (EC 4.2.1.22), CSE (EC 4.4.1.1) are cytosolic enzymes only, whereas CAT (EC 2.6.1.3) and 3-MST (EC 2.8.1.2) can be present in both cytosol and mitochondria [5]. These enzymes utilize L-cysteine as a substrate that can be taken up with the diet, extracted from endog- enous proteins, or synthesized endogenously via trans-sulfuration of serine by L-methionine [6, 7]. 3-MST is involved in cyanide detoxification as an enzyme that transfers the sulfane sulfur from substrate to cyanide ion, giving nontoxic thiocyanate and pyruvate. Zink is the cofactor of 3-MST. CAT, CBS, and CSE are pyridoxal phosphate-dependent enzymes that take part in the synthesis of cysteine from methionine and serine. CBS and CSE can execute alterna- tive reactions that yield H2S [5]. The enzyme cystathionine-β-synthase catalyzes the replace- ment of serine with homocysteine forming cystathionine and water. If cysteine is used instead of serine, the products formed are cys- tathionine and H2S. CSE catalyzes the elimina- tion of cystathionine to produce cysteine, a- ketobutyrate and ammonia. Alternatively, CSE can form H2S from both cysteine and, less significantly, homocysteine [7, 8]. The rhodanese family enzyme 3-MST cata- lyzes the formation of pyruvate and a persul- fide from cysteine derived 3-mercaptopyru- vate. In the availability of thiols, the persulfide can extricate hydrogen sulfide, composing an alternative source of the compound [9]. Since there is a tissue-specific expression of these enzymes, their contribution to the production of H2S is different. CBS and 3-MST are the main sources of H2S in the nervous system, whereas CSE dominates in cardiovascular tissues and liver [10–13]. One of the major organs regulating endogenous H2S generation through cystathionine-β- synthase and cystathionine-γ-lyase is the kid- ney [14]. And an alternative pathway for H2S formation is the reduction of some sulfur- containing compounds. For instance, cysteine persulfide (a product of the reactions of disul- fides and sulfenic acids with H2S) may be synthesized from cystine in the presence of CBS or CSE [15, 16]; thiosulfate and gluta- thione can produce glutathione persulfide in the presence of sulfurtransferases [17], and cysteine desulfurases can form a protein- bound persulfide from cysteine. All above 5 Hydrogen sulfide and mitochondria persulfides can release H2S in the presence of necessary reductants [18, 19]. The role of H2S in the respiratory chain The catabolic pathway of H2S in mitochondria contains mitochondrial inner-membrane-bound sulfide quinone reductase (SQR), which fixes H2S to sulfite (SO3 2- ) to produce thiosulfate (S2O3 2-); thiosulfate sulfurtransferase ((TST) another name is rhodanese), reducing sulfite from thiosulfate by fixating the sulfane sulfur on an –SH-containing substrate, for example, glutathione, to form a persulfide (R-S-SH) species; mitochondrial matrix sulfur dioxygen- ase, which oxidizes the sulfur atom extracted from persulfide, converting it again into sulfite; mitochondrial sulfite oxidase, which further oxidizes sulfite into sulfate SO4 2-. H2S causes protection from the oxidative stress in part by the inner membrane component sulfide qui- none oxidoreductase, the latter transferring the electrons from H2S to the electron transport chain and coenzyme Q [19-21]. The most effective system to control the H2S levels appears to be localized in mitochon- dria and is evolutionary related to the detoxi- fication and energy producing systems. The fact that the evident tissue formation of H2S under aerobic conditions is much lower than that under anaerobic conditions supports the idea that the main consumption pathways of H2S are oxygen-dependent. In mammalian cells, H2S is the first inorganic reducing sub- strate for oxidative phosphorylation [3]. The mitochondrial hydrogen sulfide oxida- tion pathway includes several enzymes, and the first is sulfidequinoneoxidoreductase (SQR) localized in the inner mitochondrial mem- brane. Here, the flavoprotein catalyzes the transfer of electrons from hydrogen sulfide to coenzyme Q producing an intermediate per- sulfide species that can transfer the sulfane sulfur to a suitable acceptor, possibly glutathi- one [22, 23]. The sulfane sulfur formed at the expense of SQR can be oxidized to sulfite by sulfur dioxygenase [24] or transferred to sulfite to form thiosulfate by the action of enzymes of the rhodanese family [25]. The findings of Bucci M et al. [26] provide an evidence that H2S acts as an endogenous inhibitor of the phosphodiesterase activity. So, H2S is able to increase mitochondrial energy metabolism by inhibiting phosphodi- esterase 2A leading to increased mitochon- drial cAMP [4, 27]. The oxidation of hydrogen sulfide in mito- chondria is vital in intestinal tissues, in which H2S formation by the microbiota is counter- acted by the protective strategies developed by colonocytes. It has been suggested that in these cell types the oxidation of H2S can com- pete with that of organic substrates, and com- plexes I and II can act in reverse, accepting electrons from reduced coenzyme Q so as to consume H2S even if cytochrome C oxidase is inhibited [28–32]. H2S in high concentrations inhibits com- plex IV, decreases the rate of electron transport and proton pumping [4]. This opposite role as inhibitor determines that the mitochondrial oxygen consumption first increases at low H2S concentrations, but then decreases as the con- centration of H2S increases. The inhibition of the respiratory chain by exposure to H2S is associated with toxic effects [33]. It is well- known that ATP contains high-energy phos- phate bonds and is produced in mitochondria 6 I. V. Gerush, Ye. O. Ferenchuk and the cytosol via glycolysis, substrate-level phosphorylation, and oxidative phosphoryla- tion. And energy is released by hydrolysis of the phosphate bond. Many chemoautotrophic and photoautotrophic bacteria and certain an- imals use sulfide as an energy substrate [34]. In the work [35], the vasorelaxant effect of H2S is shown in vivo and in vitro. The intra- venous bolus injection of H2S transiently de- creased blood pressure of rats. The modula- tory influence of H2S on KATP channels the authors explained by a direct interaction of H2S and KATP channel proteins. So, hydrogen sulfide may induce the reduction of disulfide bonds of the KATP channel protein. In other words, H2S may function as an energy sub- strate to sustain ATP synthesis under stress conditions, for example, in hypoxia, it may help to produce more ATP [34]. For the first time, the authors showed that NO appears to be a physiological modulator of the endogenous production of H2S by in- creasing the CSE expression and stimulating CSE activity. CBS and CSE can translocate to mitochondria under stress conditions, to stim- ulate mitochondrial H2S and adenosine triphos- phate production [36–38]. Hydrogen sulfide can radically decrease metabolic demand, meaning that the metabo- lism of H2S in mitochondria may serve as a means for energy supplementation. The cys- teine level inside mitochondria is 3 times higher than in the cytosol. CSE translocation is promoted by the growing level of intracel- lular calcium levels via the calcium ionophore. The translocation of CSE to mitochondria metabolizes cysteine, produces H2S inside mitochondria, and stimulates the energy pro- duction [34, 36]. 3-MST and its role in the bioenergetic process In mitochondria a source of H2S is mercapto- pyruvate sulfurtransferase, expressed predom- inantly in kidney cells, liver cells, cardiac cells, proximal tubular epithelium, pericentral hepa- tocytes, and neuroglial cells [9-13]. The crystal structure of MST reveals a mix- ture of the product complex containing pyru- vate and an active site of cysteine persulfide (Cys248-SSH), and a nonproductive interme- diate in which 3-MP is covalently linked via a disulfide bond to an active site of cysteine [19]. According to study [38], in the crystal structure of 3-MST an Asp-His-Ser catalytic triadis positioned to activate the nucleophilic cysteine residue and participate in general acid-base chemistry, whereas the kinetic anal- ysis shows that thioredoxin is likely to be the principal physiological persulfide acceptor for mercaptopyruvate sulfurtransferase. An additional enzymatic reaction that oc- curs mainly in mitochondria is the conversion of 3-mercaptopyruvate to H2S and pyruvate. The reaction is catalyzed by 3-MST and needs the activity of CAT, which also is known as aspartate aminotransferase, converting cysteine and -ketoglutarate to glutamate and 3-mercap- topyruvate. α-cysteine that is not generated in mammalian tissues but can be consumed by food is converted by α-aminotransferase to 3-mercaptopyruvate, a substrate for 3-MST [9, 13, 19]. The role of 3-MST in the regulation of cel- lular bioenergetics is realized in several ways [4, 39]. 3-MP in low concentrations produces H2S and stimulates the effect on bioenergetic parameters, and this process is suppressed by the silencing of 3-MST. A higher activity of 7 Hydrogen sulfide and mitochondria 3-MST inhibits the cellular bioenergetic an- swer, and limiting of SQR suppresses both basal and 3-MP mediated activation of bioen- ergetic function as well as the L-cysteine- mediated stimulation of mitochondrial oxygen consumption. Cysteine and α-ketoglutarate activate the mitochondrial electron transport, and these effects are attenuated by the CAT inhibitor aspartate. The 3-MP-derived, 3-MST- mediated production of H2S donates electrons into the mitochondrial electron transport chain via SQR at the level of Complex II. The acti- vating effect of enzyme on bioenergetics de- creased with oxidative stress. Since 3-MP is the substrate for 3-MST, mercaptic acids struc- turally similar to 3-MP would inhibit the activ- ity of MST. Incidentally, ketobutyrate, keto- glutarate, and pyruvate were shown to be un- competitive inhibitors of 3-MST with respect to 3-MP [29, 40–42]. H2S is eliminated following the persulfide transfer in these reactions: MST-SH +3-MP → MST-S-SH + pyruvate MST-S-SH + R-SH → MST-SH + R-S-SH R-S-SH + RSH→ R-S-S-R + H2S Inhibition of mitochondrial Complex IV by H2S Mitochondria is one of the major sources of reactive oxygen species (ROS), that causes serious damage to tissues, the aging process and different diseases. Mitochondrial Complex IV is the last enzyme of the electron transport chain in the inner mitochondrial membrane, and is an essential component of aerobic cell respiration and energy generation. As the final enzyme in the respiratory chain, it receives an electron from each of four cyto- chrome C molecules, and transfers them to one oxygen molecule, converting the latter to two molecules of water. The process contributes to the generation of transmembrane proton and it has been established that H2S in high con- centrations, binds to Complex IV, thereby in- hibiting the binding of oxygen [43, 44]. The H2S metabolism occurs in three path- ways: oxidation, methylation, and reaction with cytochrome C and other metalloproteins or disulfide-containing proteins. The acute toxicity of hydrogen sulfide at the molecular level has been attributed to the inhibition of cytochrome C oxidase [45]. In [4] the authors used the combination of three effects for ex- plaining the complex mode of inhibition: re- duction of the cytochrome a3 center, followed by a reaction with molecular O2; reduction of other centers and ligating the ferrocytochrome a3 hem group However, at lower H2S concentrations, a non-competitive type of inhibition has also been supposed (Fig. 1). Once the binding of oxygen to Complex IV is inhibited, the inner mitochondrial membrane potential is dissi- pated and aerobic ATP generation is blocked [30, 46]. The blocking of Complex IV by sulfide includes not only the inhibition of cytochrome aa3 but also a ‘false substrate’ pathway in which a cysteine radical or copper-cysteine complex reacts directly with molecular oxy- gen. Then the electrons from sulfide follow the normal oxidative way to Complex III, cyto- chrome C, and Complex IV and then to ato mic oxygen to form water [4, 47]. When compared to other substrates of the mitochondrial respiratory chain (NADH, FADH2, succinate, L-alphaglycerophosphate), the yield of sulfide in terms of electrons to be 8 I. V. Gerush, Ye. O. Ferenchuk used by the respiratory chain is relatively low: two molecules of sulfide are necessary to pro- vide two electrons. It is expensive in terms of oxygen: for the same electron transfer in the respiratory Complexes III and IV, sulfide oxi- dation needs three times more oxygen. And when it takes place, the yield of energy per one oxygen atom consumed is low in comparison with NADH or FADH2 generated by oxidation of carbon-containing substrates, so sulfide may appear as a poor energy substrate. Therefore, although the exact role of this process remains to be elucidated, sulfide may serve as an ‘emer- gency’ substrate, or as a substrate that bal- ances and can complement the electron-donat- ing effect of Krebs cycle-derived electron donors [33, 48–50]. In mitochondria, H2S acts as a cytoprotec- tive factor inhibiting the activity of cyto- chrome oxidase following ischemia/reperfu- sion, upregulating the level of superoxide dismutase, and downregulating the levels of ROS. Inhibition of cytochrome oxidase often occurs in the absence of high H2S levels in tissue [33, 48]. In the work [47], the authors suggest that H2S poisons mitochondrial respiratory chain by binding to iron of cytochrome C oxygenase, but it also helps to reduce mitochondrial dam- age and provides cytoprotection. H2S also acts both as neuroprotector increasing the produc- tion of glutathione [51] and as a modulator of the CSE translocation to mitochondria and the supply of the cell with ATP during hypoxia [34, Fig. 1. Synthesis of hydrogen sulfide and its role in the mitochondrial respiratory chain 9 Hydrogen sulfide and mitochondria 36, 37]. Because mitochondria play a key role in cell death pathways, H2S is involved in regulating apoptosis [52, 53]. Downregulation of the endogenous H2S/CSE pathway, induced by high salt concentration, was involved in mitochondrion-related human vascular endo- thelial cell apoptosis leading to the leakage of mitochondrial Cyt-C, which activated Caspase-9 and Caspase-3 [51, 54–55]. Not only the concentration of H2S directs different mi- tochondrial outcomes, but it may be also im- portant where H2S is produced inside the cell. The role of H2S in diabetes mellitus and other diseases The biological roles of endogenous H2S are multiple and rapidly expanding. Its regulatory functions span the nervous system, the regula- tion of cellular metabolism, the regulation of immunological and inflammatory responses, and various aspects of cardiovascular homeo- stasis. The metabolic pathway of H2S and mi- tochondria take part in different pathological processes in the organism, like diabetes mel- litus, diseases of heart, liver, and kidney [56– 62]. It was experimentally confirmed signifi- cant effects of H2S production or H2S donors in cardiovascular diseases, including heart fail- ure, ischemic myocardium, atherosclerosis, and hypertension [53, 58, 63–65]. The authors [46, 58] studied the influence of H2S levels on car- diac mitochondrial content. They found that restoring H2S levels with H2S-releasing pro- drug, SG-1002, in the heart failure increased cardiac mitochondrial content, improved mito- chondrial respiration, and ATP production ef- ficiency, and as a result improved cardiac func- tion. The study [66] indicates the involvement of H2S in modulation of changes in the perme- ability of mitochondrial membranes, which suggests that H2S plays an important role in the development of cardiovascular diseases. Others authors reported the changes in methabolism of gasotransmitter and a similar protective effect of H2S in ischemia reperfu- sion injury of the kidney [28, 54]. In the review [67] the cellular and molecular mechanisms of protection by H2S in experimental models of chronic kidney disease are discussed. H2S regulates some proteins involved in cellular oxidative stress, which could result in a protective effect against aging. It inhibits the mitochondrial ROS production and prevents activation of the adaptor protein p66Shc [68– 71] and reduces the advanced glycation end products toxicity by persulfidating its receptor for advanced glycation end products [69]. Some studies of diabetic disease show that increased extracellular glucose induces mito- chondrial dysfunction in endothelial cells [34, 57–59, 70]. This causes the inhibition of cel- lular bioenergetics through the dysfunction of mitochondrial electron transport and the gen- eration of ATP [68, 71–72]. In work [74], the authors studied an impor- tant mechanism for the fine control of insulin secretion from pancreatic β-cells. The study demonstrated that an increase in extracellular glucose concentration lowers the endogenous H2S level. The possible mechanism of interac- tion among glucose, H2S, and the KATP chan- nels may constitute a novel mechanism for the control of insulin secretion from pancreatic β-cells in any pathophysiological conditions. The KATP channels are sensitive to the chang- es in intracellular ATP concentration. Elevation of intracellular ATP level leads to closure of the KATP channels in many metabolically active 10 I. V. Gerush, Ye. O. Ferenchuk cells. In this way, the KATP channel is a cou- pling factor to link metabolic activity and membrane excitability. When circulating glu- cose level elevates, the glucose influx into pancreatic β-cells increases as well as the ATP production. Consequential closure of the KATP channels on plasma membrane depolarizes the membrane and opens the voltage-dependent calcium channels. The final eventuality of this chain reaction increased the insulin release due to elevated intracellular free calcium. In the study it was determined that the endogenous H2S production from INS-1E cells varies in vivo conditions, which significantly affects the insulin secretion from INS-1E cells. H2S stim- ulates the KATP channels in INS-1E cells, in- dependently of the activation of cytosolic sec- ond messengers, which may underlie H2S- inhibited insulin secretion from these cells. There is a hypothesis [71] that H2S provides physiological reducing and antioxidant intra- cellular environment within the endothelial cells, which helps to support normal mitochon- drial functions. So, ROS from hyperglycemic mitochondria directly reacts with and con- sumes the intracellular H2S, which then in- duces additional mitochondrial dysfunction, possibly by oxidative modification of mito- chondrial proteins. This positive feed-forward cycle may then lead to a mitochondrial dys- function where molecular oxygen is utilized to produce ROS instead of ATP, and where mitochondrial efficacy is diminished. Noteworthy, some authors [4, 52, 38, 70– 77] reported that H2S exerts protective effects against the development of diabetic complica- tions, at least protecting the mitochondria. The level of sulfide is decreased in diabetes, in part due to an increase in consumption of sulfide by ROS production, which causes the down- regulation of H2S-producing enzyme in endo- thelial cells, CSE. The results of the study [78] evidence that the CSE-produced hydrogen sulfide protects beta-cells from glucotoxicity via regulation of expression of the thioredox- in binding protein-2 levels and thus prevents the development of type 2 diabetes. H2S has a protective effect on endothelial cell apoptosis induced by high glucose level [52]. This effect was linked to the increased superoxide dismutases activity and decreased generation of reactive oxygen species and level of thiobarbituric acid products, which subsequently attenuated the high glucose im- paired antioxidant activities. Genetic expres- sion or pharmacological supplementation of H2S-producing enzymes in hyperglycaemic cells reduces the mitochondrial ROS formation [38] and exerts the cytoprotective effect, in- cluding normalization of mitochondrial bioen- ergetics (recovery of oxidative phosphoryla- tion, inhibition of glycolysis) [35, 58]. Additionally, sulfide protects against the activation of pro-inflammatory signaling path- ways in endothelial cells with hyperglycemia (inflammatory cytokine production and NF-κB activation) [79-81], against reduction in matrix protein synthesis and remodeling [82–84]. However, a specific role of H2S in some dis- eases remains to be investigated. Conclusions In mammals, the endogenous H2S is synthe- sized from homocysteine and cysteine through the enzymes of the transsulfuration pathway. These enzymes are cystathionine-β-synthase, cystathionine-γ-lyase, cysteine aminotransfer- ase, and mercaptopyruvate sulfurtransferase. 11 Hydrogen sulfide and mitochondria In mitochondria, H2S is produced by mercap- topyruvate sulfurtransferase. H2S may function as the source of electrons to sustain ATP syn- thesis under stress conditions, but in high con- centration H2S inhibits Complex IV, blocking electron transport and proton pumping. The interaction between glucose in high concentration, H2S and the KATP channel may constitute a novel mechanism for the control of insulin secretion. The positive impact of H2S on bioenergetic function in mitochondria may have a therapeutic effect against diabetic com- plications. The problems discussed and the processes of synthesis and regulation of H2S enzymes in mitochondria need further investi- gation in this promising field of research. REFERENCES 1. Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev. 2012;92(2):791–896. 2. Beauchamp RO Jr, Bus JS, Popp JA, Boreiko CJ, Andjelkovich DA. A critical review of the literature on hydrogen sulfide toxicity. Crit Rev Toxicol. 1984;13(1):25-97.. 3. Goubern M, Andriamihaja M, Nübel T, Blachier F, Bouillaud F. Sulfide, the first inorganic substrate for human cells. FASEB J. 2007;21(8):1699–706. 4. Szabo C, Ransy C, Módis K, Andriamihaja M, Mur- ghes B, Coletta C, Olah G, Yanagi K, Bouillaud F. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part I. Biochemical and phys- iological mechanisms. Br J Pharmacol. 2014;171(8): 2099–122. 5. Kabil O, Banerjee R. Enzymology of H2S bioge- nesis, decay and signaling. Antioxid Redox Signal. 2014;20(5):770–82. 6. Chen X, Jhee KH, Kruger WD. Production of the neuromodulator H2S by cystathionine beta-synthase via the condensation of cysteine and homocysteine. J Biol Chem. 2004;279(50):52082–6. 7. Singh S, Padovani D, Leslie RA, Chiku T, Baner- jee R. Relative contributions of cystathionine beta- synthase and gamma-cystathionase to H2S biogen- esis via alternative trans-sulfuration reactions. J Biol Chem. 2009;284(33):22457–66. 8. Chiku T, Padovani D, Zhu W, Singh S, Vitvitsky V, Banerjee R. H2S biogenesis by human cystathionine gamma-lyase leads to the novel sulfur metabolites lanthionine and homolanthionine and is responsive to the grade of hyperhomocysteinemia. J Biol Chem. 2009;284(17):11601–12. 9. Shibuya N, Mikami Y, Kimura Y, Nagahara N, Kimu- ra H. Vascular endothelium expresses 3-mercapto- pyruvate sulfurtransferase and produces hydrogen sulfide. J Biochem. 2009;146(5):623–6. 10. Meister A, Fraser PE, Tice SV. Enzymatic desulfu- ration of beta-mercaptopyruvate to pyruvate. J Biol Chem. 1954;206(2):561–75. 11. Kabil O, Vitvitsky V, Xie P, Banerjee R. The quan- titative significance of the transsulfuration enzymes for H2S production in murine tissues. Antioxid Redox Signal. 2011;15(2):363–72. 12. Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S, Snyder SH, Wang R. H2S as a physiologic vasorelaxant: hyper- tension in mice with deletion of cystathionine gam- ma-lyase. Science. 2008;322(5901):587–90. 13. Shibuya N, Tanaka M, Yoshida M, Ogasawara Y, Togawa T, Ishii K, Kimura H. 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid Redox Signal. 2009;11(4):703–14. 14. Wang P, Isaak CK, Siow YL, O K. Downregulation of cystathionine β-synthase and cystathionine γ-lyase expression stimulates inflammation in kid- ney ischemia-reperfusion injury. Physiol Rep. 2014;2(12). pii: e12251. 15. Ida T, Sawa T, Ihara H, Tsuchiya Y, Watanabe Y, Kumagai Y, Suematsu M, Motohashi H, Fujii S, Matsunaga T, Yamamoto M, Ono K, Devarie- Baez NO, Xian M, Fukuto JM, Akaike T. Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling. Proc Natl Acad Sci U S A. 2014;111(21):7606–11. 12 I. V. Gerush, Ye. O. Ferenchuk 16. Yadav PK, Martinov M, Vitvitsky V, Seravalli J, Wedmann R, Filipovic MR, Banerjee R. Biosynthe- sis and Reactivity of Cysteine Persulfides in Signal- ing. J Am Chem Soc. 2016;138(1):289–99. 17. Melideo SL, Jackson MR, Jorns MS. Biosynthesis of a central intermediate in hydrogen sulfide me- tabolism by a novel human sulfurtransferase and its yeast ortholog. Biochemistry. 2014;53(28):4739–53. 18. Zheng L, White RH, Cash VL, Dean DR. Mechanism for the desulfurization of L-cysteine catalyzed by the nifS gene product. Biochemistry. 1994;33(15): 4714–20. 19. Yadav PK, Yamada K, Chiku T, Koutmos M, Baner- jee R. Structure and kinetic analysis of H2S produc- tion by human mercaptopyruvate sulfurtransferase. J Biol Chem. 2013;288(27):20002–13. 20. Furne J, Saeed A, Levitt MD. Whole tissue hydrogen sulfide concentrations are orders of magnitude low- er than presently accepted values. Am J Physiol Regul Integr Comp Physiol. 2008;295(5):R1479–85. 21. Vitvitsky V, Kabil O, Banerjee R. High turnover rates for hydrogen sulfide allow for rapid regulation of its tissue concentrations. Antioxid Redox Signal. 2012;17(1):22–31. 22. Theissen U, Hoffmeister M, Grieshaber M, Mar- tin W. Single eubacterial origin of eukaryotic sulfide:quinone oxidoreductase, a mitochondrial enzyme conserved from the early evolution of eu- karyotes during anoxic and sulfidic times. Mol Biol Evol. 2003;20(9):1564–74. 23. Libiad M, Yadav PK, Vitvitsky V, Martinov M, Ba- nerjee R. Organization of the human mitochondrial hydrogen sulfide oxidation pathway. J Biol Chem. 2014;289(45):30901–10. 24. Kabil O, Banerjee R. Characterization of patient mutations in human persulfide dioxygenase (ETHE1) involved in H2S catabolism. J Biol Chem. 2012;287(53):44561–7. 25. Hildebrandt TM, Grieshaber MK. Three enzymatic activities catalyze the oxidation of sulfide to thio- sulfate in mammalian and invertebrate mitochon- dria. FEBS J. 2008;275(13):3352–61. 26. Bucci M, Papapetropoulos A, Vellecco V, Zhou Z, Pyriochou A, Roussos C, Roviezzo F, Brancaleone V, Cirino G. Hydrogen sulfide is an endogenous in- hibitor of phosphodiesterase activity. Arterioscler Thromb Vasc Biol. 2010;30(10):1998–2004. 27. Módis K, Panopoulos P, Coletta C, Papapetropou- los A, Szabo C. Hydrogen sulfide-mediated stimula- tion of mitochondrial electron transport involves inhibition of the mitochondrial phosphodiesterase 2A, elevation of cAMP and activation of protein kinase A. Biochem Pharmacol. 2013;86(9):1311–9. 28. Bartholomew TC, Powell GM, Dodgson KS, Cur- tis CG. Oxidation of sodium sulphide by rat liver, lungs and kidney. Biochem Pharmacol. 1980;29(18): 2431–7. 29. Tiranti V, Viscomi C, Hildebrandt T, Di Meo I, Mi- neri R, Tiveron C, Levitt MD, Prelle A, Fagiolari G, Rimoldi M, Zeviani M. Loss of ETHE1, a mitochon- drial dioxygenase, causes fatal sulfide toxicity in ethylmalonic encephalopathy. Nat Med. 2009;15(2): 200–5. 30. Cooper CE, Brown GC. The inhibition of mitochon- drial cytochrome oxidase by the gases carbon mon- oxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological sig- nificance. J Bioenerg Biomembr. 2008;40(5):533–9. 31. Bouillaud F, Blachier F. Mitochondria and sulfide: a very old story of poisoning, feeding, and signal- ing? Antioxid Redox Signal. 2011;15(2):379–91. 32. Linden DR, Sha L, Mazzone A, Stoltz GJ, Ber- nard CE, Furne JK, Levitt MD, Farrugia G, Szursze- wski JH. Production of the gaseous signal molecule hydrogen sulfide in mouse tissues. J Neurochem. 2008;106(4):1577–85. 33. Khan AA, Schuler MM, Prior MG, Yong S, Cop- pock RW, Florence LZ, Lillie LE. Effects of hydro- gen sulfide exposure on lung mitochondrial respira- tory chain enzymes in rats. Toxicol Appl Pharmacol. 1990;103(3):482–90. 34. Fu M, Zhang W, Wu L, Yang G, Li H, Wang R. Hy- drogen sulfide (H2S) metabolism in mitochondria and its regulatory role in energy production. Proc Natl Acad Sci U S A. 2012;109(8):2943-8.. 35. Zhao W, Zhang J, Lu Y, Wang R. The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. EMBO J. 2001;20(21):6008–16. 36. Guo W, Kan JT, Cheng ZY, Chen JF, Shen YQ, Xu J, Wu D, Zhu YZ. Hydrogen sulfide as an endogenous 13 Hydrogen sulfide and mitochondria modulator in mitochondria and mitochondria dys- function. Oxid Med Cell Longev. 2012;2012:878052. 37. Teng H, Wu B, Zhao K, Yang G, Wu L, Wang R. Oxygen-sensitive mitochondrial accumulation of cystathionine β-synthase mediated by Lon protease. Proc Natl Acad Sci U S A. 2013;110(31):12679–84. 38. Módis K, Bos EM, Calzia E, van Goor H, Coletta C, Papapetropoulos A, Hellmich MR, Radermacher P, Bouillaud F, Szabo C. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part II. Pathophysiological and therapeutic aspects. Br J Pharmacol. 2014;171(8):2123–46. 39. Módis K, Coletta C, Erdélyi K, Papapetropoulos A, Szabo C. Intramitochondrial hydrogen sulfide pro- duction by 3-mercaptopyruvate sulfurtransferase maintains mitochondrial electron flow and supports cellular bioenergetics. FASEB J. 2013;27(2):601–11. 40. Módis K, Asimakopoulou A, Coletta C, Papapetro- poulos A, Szabo C. Oxidative stress suppresses the cellular bioenergetic effect of the 3-mercaptopyru- vate sulfurtransferase/hydrogen sulfide pathway. Biochem Biophys Res Commun. 2013;433(4):401–7. 41. Kamoun P. Endogenous production of hydrogen sulfide in mammals. Amino Acids. 2004;26(3): 243–54. 42. Shibuya N, Koike S, Tanaka M, Ishigami-Yuasa M, Kimura Y, Ogasawara Y, Fukui K, Nagahara N, Kimura H. A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells. Nat Commun. 2013;4:1366. 43. James AM, Murphy MP. How mitochondrial damage affects cell function. J Biomed Sci. 2002; 9(6 Pt 1):475–87. 44. Duchen MR. Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Aspects Med. 2004;25(4):365–451. 45. Predmore BL, Lefer DJ, Gojon G. Hydrogen sulfide in biochemistry and medicine. Antioxid Redox Sig- nal. 2012;17(1):119–40. 46. Essick EE, Sam F. Oxidative stress and autophagy in cardiac disease, neurological disorders, aging and cancer. Oxid Med Cell Longev. 2010;3(3):168–77. 47. Nicholson RA, Roth SH, Zhang A, Zheng J, Brookes J, Skrajny B, Bennington R. Inhibition of respiratory and bioenergetic mechanisms by hydro- gen sulfide in mammalian brain. J Toxicol Environ Health A. 1998;54(6):491–507. 48. Dorman DC, Moulin FJ, McManus BE, Mahle KC, James RA, Struve MF. Cytochrome oxidase inhibi- tion induced by acute hydrogen sulfide inhalation: correlation with tissue sulfide concentrations in the rat brain, liver, lung, and nasal epithelium. Toxicol Sci. 2002;65(1):18–25. 49. Powell MA, Somero GN. Hydrogen Sulfide Oxida- tion Is Coupled to Oxidative Phosphorylation in Mitochondria of Solemya reidi. Science. 1986;233(4763):563–6. 50. Detmer SA, Chan DC. Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol. 2007;8(11):870–9. 51. Kimura Y, Goto Y, Kimura H. Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid Redox Signal. 2010;12(1):1–13. 52. Guan Q, Zhang Y, Yu C, Liu Y, Gao L, Zhao J. Hy- drogen sulfide protects against high-glucose-induced apoptosis in endothelial cells. J Cardiovasc Phar- macol. 2012;59(2):188–93. 53. Zhou X, Lu X. Hydrogen sulfide inhibits high-glu- cose-induced apoptosis in neonatal rat cardiomyo- cytes. Exp Biol Med (Maywood). 2013;238(4):370– 4. 54. Yuan Q, Hong S, Han S, Zeng L, Liu F, Ding G, Kang Y, Mao J, Cai M, Zhu Y, Wang QX. Precondi- tioning with physiological levels of ethanol protect kidney against ischemia/reperfusion injury by mod- ulating oxidative stress. PLoS One. 2011;6(10): e25811. 55. Xia M, Chen L, Muh RW, Li PL, Li N. Production and actions of hydrogen sulfide, a novel gaseous bioactive substance, in the kidneys. J Pharmacol Exp Ther. 2009;329(3):1056–62. 56. Yanchuk PI, Slobodianyk LA. [The role of hydrogen sulfide in regulation of circulation blood liver]. Fiziol Zh. 2015;61(3):28–34. 57. Zheng SF, Bao RK, Zhang QJ, Wang SC, Lin HJ. Endogenous Hydrogen Sulfide Promotes Apoptosis via Mitochondrial Pathways in the Livers of Broi lers with Selenium Deficiency Exudative Diathesis Dis- ease. Biol Trace Elem Res. 2018;186(1):249–257. 14 I. V. Gerush, Ye. O. Ferenchuk 58. Shimizu Y, Polavarapu R, Eskla KL, Nicholson CK, Koczor CA, Wang R, Lewis W, Shiva S, Lefer DJ, Calvert JW. Hydrogen sulfide regulates cardiac mitochondrial biogenesis via the activation of AMPK. J Mol Cell Cardiol. 2018;116:29–40. 59. Sivitz WI, Yorek MA. Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal. 2010;12(4):537–77. 60. Yang W, Yang G, Jia X, Wu L, Wang R. Activation of KATP channels by H2S in rat insulin-secreting cells and the underlying mechanisms. J Physiol. 2005;569(Pt 2):519–31. 61. Szabó C. Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov. 2007;6(11): 917–35. 62. Mel’nyk AV, Pentiuk OO. [Activity of hydrogen sulfide production enzymes in kidneys of rats]. Ukr Biokhim Zh (1999). 2009;81(4):12–22. 63. * Sagach VF, Shymanska TV, Goshovska YuV. Influ- ence of stimulation and blockade of synthesis of endogenous hydrogen sulfide on the function of the heart under conditions of ischemia-reperfusion. Fiziol Zh. 2013; 59 (4): 8–15. 64. * Berezovsky VYa, Plotnikova LM. Hydrogen sulfide and its role in the regulation of vascular tone. J hy- drology and rehabilitation. 2012; 10 (1): 4–10. 65. * Zaichko NV, Yoltukhivsky MM, Olkhovsky OS, Palamarchuk VI. Age characteristics of the effect of propargylglycine and sodium hydrogen sulfide on the H2S exchange rate in myocardium of rats. Bull. Biology and Medicine. 2013; 4 (2): 105–10. 66. * Strutinskaya NA, Semenykhina OM, Chornaya SV. Hydrogen sulfide suppresses the calcium induced opening of the mitochondrial pores in the heart of adults and old rats. Phys Journ. 2011; 57 (6): 3–13. 67. Dugbartey GJ. The smell of renal protection against chronic kidney disease: Hydrogen sulfide offers a potential stinky remedy. Pharmacol Rep. 2018;70(2): 196–205. 68. Wu W, Hou CL, Mu XP, Sun C, Zhu YC, Wang MJ, Lv QZ. H(2)S Donor NaHS Changes the Production of Endogenous H(2)S and NO in D-Galactose-In- duced Accelerated Ageing. Oxid Med Cell Longev. 2017;2017:5707830. 69. Zhou H, Ding L, Wu Z, Cao X, Zhang Q, Lin L, Bian JS. Hydrogen sulfide reduces RAGE toxicity through inhibition of its dimer formation. Free Radic Biol Med. 2017;104:262–271. 70. Giacco F, Brownlee M. Oxidative stress and dia- betic complications. Circ Res. 2010;107(9):1058–70. 71. Pangare M, Makino A. Mitochondrial function in vascular endothelial cell in diabetes. J Smooth Mus- cle Res. 2012;48(1):1–26. 72. Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404(6779):787–90. 73. Suzuki K, Olah G, Modis K, Coletta C, Kulp G, Gerö D, Szoleczky P, Chang T, Zhou Z, Wu L, Wang R, Papapetropoulos A, Szabo C. Hydrogen sulfide replacement therapy protects the vascular endothelium in hyperglycemia by preserving mito- chondrial function. Proc Natl Acad Sci U S A. 2011;108(33):13829–34. 74. Szabo C. Roles of hydrogen sulfide in the pathogen- esis of diabetes mellitus and its complications. An- tioxid Redox Signal. 2012;17(1):68–80. 75. Gerush IV, Bevzo VV, Ferenchuk YeO. The effect of melatonin on lipid peroxide oxidation, oxidative modification of proteins and mitochondria swelling in the skeletal muscle tissue of rats under alloxan diabetes Ukr Biochem J. 2018; 90 (3):62–9. 76. Yamamoto J, Sato W, Kosugi T, Yamamoto T, Kimu- ra T, Taniguchi S, Taniguchi S, Kojima H, Maruya- ma S, Imai, E, Matsuo, S, Yuzawa, Y, Niki, I. Distri- bution of hydrogen sulfide (H2S)-producing en- zymes and the roles of the H2S donor sodium hy- drosulfide in diabetic nephropathy. Clin Exp Nephrol. 2013; 17(1): 32–40. 77. Jain SK, Bull R, Rains JL, Bass PF, Levine SN, Reddy S, McVie R, Bocchini JA. Low levels of hy- drogen sulfide in the blood of diabetes patients and streptozotocin-treated rats causes vascular inflamma- tion? Antioxid Redox Signal. 2010;12(11):1333–7. 78. Okamoto M, Yamaoka M, Takei M, Ando T, Taniguchi S, Ishii I, Tohya K, Ishizaki T, Niki I, Kimura T. En- dogenous hydrogen sulfide protects pancreatic beta- 15 Hydrogen sulfide and mitochondria cells from a high-fat diet-induced glucotoxicity and prevents the development of type 2 diabetes. Biochem Biophys Res Commun. 2013;442(3-4):227–33. 79. Gadalla MM, Snyder SH. Hydrogen sulfide as a gasotransmitter. J Neurochem. 2010;113(1):14–26. 80. Si YF, Wang J, Guan J, Zhou L, Sheng Y, Zhao J. Treatment with hydrogen sulfide alleviates strepto- zotocin-induced diabetic retinopathy in rats. Br J Pharmacol. 2013;169(3):619–31. 81. Lee HJ, Mariappan MM, Feliers D, Cavaglieri RC, Sataranatarajan K, Abboud HE, Choudhury GG, Kasinath BS. Hydrogen sulfide inhibits high glu- cose-induced matrix protein synthesis by activating AMP-activated protein kinase in renal epithelial cells. J Biol Chem. 2012;287(7):4451–61. 82. Abe K, Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neuro- sci. 1996;16(3):1066–71. 83. Wang R. Hydrogen sulfide: the third gasotransmitter in biology and medicine. Antioxid Redox Signal. 2010;12(9):1061–4. 84. Yuan P, Xue H, Zhou L, Qu L, Li C, Wang Z, Ni J, Yu C, Yao T, Huang Y, Wang R, Lu L. Rescue of mesangial cells from high glucose-induced over- proliferation and extracellular matrix secretion by hydrogen sulfide. Nephrol Dial Transplant. 2011;26(7):2119-26. Гідроген сульфід і мітохондрія І. В. Геруш, Є. О. Ференчук Існуть різні дані про роль гідроген судьфіду (H2S) в каталітичних та енергетичних процесах, але біохіміч- ні механізми різноманітних ефектів H2S ще недостат- ньо вивчені. Ферментативний синтез H2S здійснюєть- ся цистатіонін-γ-ліазою, цистатіонін-β-синтазою, цис- теїн амінотрансферазою, а в мітохондріях – 3-меркап- топіруват сульфуртрансферазою. H2S може функціо- нувати як енергетичний субстрат для підтримки синтезу АТФ в умовах стресу, але при високій концен- трації молекула інгібує комплекс IV, блокуючи пере- несення електронів. Взаємодія між високим рівнем глюкози, сірководнем і KATP-каналами може стати новим механізмом контролю секреції інсуліну, а ефект H2S на біоенергетичну функцію можна застосовувати при ускладненнях багатьох захворювань. К л юч ов і с л ов а: гідрогену сульфід, мітохондрії, енергетичний обмін. Сероводород и митохондрия И. В. Геруш, Е. А. Ференчук Существуют различные данные о роли сероводорода (H2S) в каталитических и энергетических процессах организма, но биохимические механизмы всевозмож- ных эффектов H2S еще недостаточно изучены. Ферментативный синтез H2S осуществляется циста- тионин-γ-лиазой, цистатионин-β-синтазой, цистеин аминотрансферазой, а в митохондриях – 3-меркапто- пируват сульфуртрансферазой. H2S может функцио- нировать как энергетический субстрат для поддержа- ния синтеза АТФ в условиях стресса, но в высокой концентрации молекула ингибирует комплекс IV, бло- кируя перенос электронов. Взаимодействие между высоким уровнем глюкозы, сероводородом и KATP- каналом может стать новым механизмом контроля секреции инсулина, а эффект H2S на биоэнергетиче- скую функцию возможно применять при осложнениях многих заболеваний. К л юч е в ы е с л ов а: сероводород, митохондрия, энергетический обмен. Received 06.12.2017