Elaboration of new method of enzyme adsorption on silicalite and nano beta zeolite for amperometric biosensor creation
Aim. Optimization of a new method of enzyme immobilization for amperometric biosensor creation. Methods. The amperometric biosensor with glucose oxidase immobilized on zeolites as bioselective elements and platinum disk electrode as transducers of biochemical signal into the electric one was used in...
Збережено в:
| Опубліковано в: : | Вiopolymers and Cell |
|---|---|
| Дата: | 2014 |
| Автори: | , , , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут молекулярної біології і генетики НАН України
2014
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/154426 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Elaboration of new method of enzyme adsorption on silicalite and nano beta zeolite for amperometric biosensor creation / O.O. Soldatkin, B. Ozansoy Kasap, B. Akata Kurc, A.P. Soldatkin, S.V. Dzyadevych, A.V. El’skaya // Вiopolymers and Cell. — 2014. — Т. 30, № 4. — С. 291-298. — Бібліогр.: 24 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-154426 |
|---|---|
| record_format |
dspace |
| spelling |
Soldatkin, O.O. Ozansoy Kasap, B. Akata Kurc, B. Soldatkin, A.P. Dzyadevych, S.V. El’skaya, A.V. 2019-06-15T15:26:42Z 2019-06-15T15:26:42Z 2014 Elaboration of new method of enzyme adsorption on silicalite and nano beta zeolite for amperometric biosensor creation / O.O. Soldatkin, B. Ozansoy Kasap, B. Akata Kurc, A.P. Soldatkin, S.V. Dzyadevych, A.V. El’skaya // Вiopolymers and Cell. — 2014. — Т. 30, № 4. — С. 291-298. — Бібліогр.: 24 назв. — англ. 0233-7657 DOI: http://dx.doi.org/10.7124/bc.0008A3 https://nasplib.isofts.kiev.ua/handle/123456789/154426 577.15.08:543.9 Aim. Optimization of a new method of enzyme immobilization for amperometric biosensor creation. Methods. The amperometric biosensor with glucose oxidase immobilized on zeolites as bioselective elements and platinum disk electrode as transducers of biochemical signal into the electric one was used in the work. Results. The biosensors based on glucose oxidase adsorbed on zeolites were characterized by a higher sensitivity to glucose and a better inter-reproducibility. The best analytical characteristics were obtained for the biosensors based on nano beta zeolite. It has been found that an increase in the amount of zeolite on the surface of amperometric transducer may change such biosensor parameters as sensitivity to the substrate and duration of the analysis. Conclusions. The proposed method of enzyme immobilization by adsorption on zeolites is shown to be quite promising in the development of amperometric biosensors and therefore should be further investigated. Мета. Оптимізація нового методу іммобілізації ферментів для розробки амперометричних біосенсорів. Методи. Використано іммобілізовану глюкозооксидазу на цеоліті як біоселективний елемент біосенсора та платиновий дисковий електрод – як амперометричний перетворювач біохімічного сигналу в електричний. Результати. Біосенсор на основі глюкозооксидази, адсорбованої на цеолітах, вирізняється високою чутливістю до глюкози та покращеною інтер-відновлюваністю виготовлення біосенсорів. Найкращі аналітичні характеристики притаманні біосенсору на основі нано-бета цеоліту. Встановлено, що при зміні кількості цеолітів на поверхні амперметричного перетворювача можна варіювати параметри біосенсора, такі як чутливість до субстрату та час аналізу. Висновки. Показано, що запропонований метод іммобілізації, а саме – адсорбція ферментів на цеолітах є дуже перспективним при розробці амперометричних біосенсорів. Цель. Оптимизация нового метода иммобилизации ферментов для разработки амперометрических биосенсоров. Методы. Использовали иммобилизованную глюкозооксидазу на цеолитах как биоселективный элемент биосенсора и платиновый дисковый электрод – как амперометрический преобразователь биохимического сигнала в электрический. Результаты. Биосенсор на основе глюкозооксидазы, адсорбированной на цеолитах, отличается высокой чувствительностью к глюкозе и улучшенной интер-воспроизводимостью приготовления биосенсоров. Наилучшими аналитическими характеристиками обладает биосенсор на основе нано-бета цеолита. Установлено, что при изменении количества цеолитов на поверхности амперометрического преобразователя можно менять параметры биосенсора, такие как чувствительность к субстрату и время анализа. Выводы. Показано, что предложенный метод иммобилизации, а именно – адсорбция ферментов на цеолитах является перспективным при разработке амперометрических биосенсоров. en Інститут молекулярної біології і генетики НАН України Вiopolymers and Cell Molecular and Cell Biotechnologies Elaboration of new method of enzyme adsorption on silicalite and nano beta zeolite for amperometric biosensor creation Розробка нового методу на основі адсорбції ферменту на силікаліті та нано-бета цеоліті для створення амперометричних біосенсорів Розработка нового метода на основе адсорбции фермента на силикалите и нано-бета цеолите для создания амперометрических биосенсоров. Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Elaboration of new method of enzyme adsorption on silicalite and nano beta zeolite for amperometric biosensor creation |
| spellingShingle |
Elaboration of new method of enzyme adsorption on silicalite and nano beta zeolite for amperometric biosensor creation Soldatkin, O.O. Ozansoy Kasap, B. Akata Kurc, B. Soldatkin, A.P. Dzyadevych, S.V. El’skaya, A.V. Molecular and Cell Biotechnologies |
| title_short |
Elaboration of new method of enzyme adsorption on silicalite and nano beta zeolite for amperometric biosensor creation |
| title_full |
Elaboration of new method of enzyme adsorption on silicalite and nano beta zeolite for amperometric biosensor creation |
| title_fullStr |
Elaboration of new method of enzyme adsorption on silicalite and nano beta zeolite for amperometric biosensor creation |
| title_full_unstemmed |
Elaboration of new method of enzyme adsorption on silicalite and nano beta zeolite for amperometric biosensor creation |
| title_sort |
elaboration of new method of enzyme adsorption on silicalite and nano beta zeolite for amperometric biosensor creation |
| author |
Soldatkin, O.O. Ozansoy Kasap, B. Akata Kurc, B. Soldatkin, A.P. Dzyadevych, S.V. El’skaya, A.V. |
| author_facet |
Soldatkin, O.O. Ozansoy Kasap, B. Akata Kurc, B. Soldatkin, A.P. Dzyadevych, S.V. El’skaya, A.V. |
| topic |
Molecular and Cell Biotechnologies |
| topic_facet |
Molecular and Cell Biotechnologies |
| publishDate |
2014 |
| language |
English |
| container_title |
Вiopolymers and Cell |
| publisher |
Інститут молекулярної біології і генетики НАН України |
| format |
Article |
| title_alt |
Розробка нового методу на основі адсорбції ферменту на силікаліті та нано-бета цеоліті для створення амперометричних біосенсорів Розработка нового метода на основе адсорбции фермента на силикалите и нано-бета цеолите для создания амперометрических биосенсоров. |
| description |
Aim. Optimization of a new method of enzyme immobilization for amperometric biosensor creation. Methods. The amperometric biosensor with glucose oxidase immobilized on zeolites as bioselective elements and platinum disk electrode as transducers of biochemical signal into the electric one was used in the work. Results. The biosensors based on glucose oxidase adsorbed on zeolites were characterized by a higher sensitivity to glucose and a better inter-reproducibility. The best analytical characteristics were obtained for the biosensors based on nano beta zeolite. It has been found that an increase in the amount of zeolite on the surface of amperometric transducer may change such biosensor parameters as sensitivity to the substrate and duration of the analysis. Conclusions. The proposed method of enzyme immobilization by adsorption on zeolites is shown to be quite promising in the development of amperometric biosensors and therefore should be further investigated.
Мета. Оптимізація нового методу іммобілізації ферментів для розробки амперометричних біосенсорів. Методи. Використано іммобілізовану глюкозооксидазу на цеоліті як біоселективний елемент біосенсора та платиновий дисковий електрод – як амперометричний перетворювач біохімічного сигналу в електричний. Результати. Біосенсор на основі глюкозооксидази, адсорбованої на цеолітах, вирізняється високою чутливістю до глюкози та покращеною інтер-відновлюваністю виготовлення біосенсорів. Найкращі аналітичні характеристики притаманні біосенсору на основі нано-бета цеоліту. Встановлено, що при зміні кількості цеолітів на поверхні амперметричного перетворювача можна варіювати параметри біосенсора, такі як чутливість до субстрату та час аналізу. Висновки. Показано, що запропонований метод іммобілізації, а саме – адсорбція ферментів на цеолітах є дуже перспективним при розробці амперометричних біосенсорів.
Цель. Оптимизация нового метода иммобилизации ферментов для разработки амперометрических биосенсоров. Методы. Использовали иммобилизованную глюкозооксидазу на цеолитах как биоселективный элемент биосенсора и платиновый дисковый электрод – как амперометрический преобразователь биохимического сигнала в электрический. Результаты. Биосенсор на основе глюкозооксидазы, адсорбированной на цеолитах, отличается высокой чувствительностью к глюкозе и улучшенной интер-воспроизводимостью приготовления биосенсоров. Наилучшими аналитическими характеристиками обладает биосенсор на основе нано-бета цеолита. Установлено, что при изменении количества цеолитов на поверхности амперометрического преобразователя можно менять параметры биосенсора, такие как чувствительность к субстрату и время анализа. Выводы. Показано, что предложенный метод иммобилизации, а именно – адсорбция ферментов на цеолитах является перспективным при разработке амперометрических биосенсоров.
|
| issn |
0233-7657 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/154426 |
| citation_txt |
Elaboration of new method of enzyme adsorption on silicalite and nano beta zeolite for amperometric biosensor creation / O.O. Soldatkin, B. Ozansoy Kasap, B. Akata Kurc, A.P. Soldatkin, S.V. Dzyadevych, A.V. El’skaya // Вiopolymers and Cell. — 2014. — Т. 30, № 4. — С. 291-298. — Бібліогр.: 24 назв. — англ. |
| work_keys_str_mv |
AT soldatkinoo elaborationofnewmethodofenzymeadsorptiononsilicaliteandnanobetazeoliteforamperometricbiosensorcreation AT ozansoykasapb elaborationofnewmethodofenzymeadsorptiononsilicaliteandnanobetazeoliteforamperometricbiosensorcreation AT akatakurcb elaborationofnewmethodofenzymeadsorptiononsilicaliteandnanobetazeoliteforamperometricbiosensorcreation AT soldatkinap elaborationofnewmethodofenzymeadsorptiononsilicaliteandnanobetazeoliteforamperometricbiosensorcreation AT dzyadevychsv elaborationofnewmethodofenzymeadsorptiononsilicaliteandnanobetazeoliteforamperometricbiosensorcreation AT elskayaav elaborationofnewmethodofenzymeadsorptiononsilicaliteandnanobetazeoliteforamperometricbiosensorcreation AT soldatkinoo rozrobkanovogometodunaosnovíadsorbcíífermentunasilíkalítítananobetaceolítídlâstvorennâamperometričnihbíosensorív AT ozansoykasapb rozrobkanovogometodunaosnovíadsorbcíífermentunasilíkalítítananobetaceolítídlâstvorennâamperometričnihbíosensorív AT akatakurcb rozrobkanovogometodunaosnovíadsorbcíífermentunasilíkalítítananobetaceolítídlâstvorennâamperometričnihbíosensorív AT soldatkinap rozrobkanovogometodunaosnovíadsorbcíífermentunasilíkalítítananobetaceolítídlâstvorennâamperometričnihbíosensorív AT dzyadevychsv rozrobkanovogometodunaosnovíadsorbcíífermentunasilíkalítítananobetaceolítídlâstvorennâamperometričnihbíosensorív AT elskayaav rozrobkanovogometodunaosnovíadsorbcíífermentunasilíkalítítananobetaceolítídlâstvorennâamperometričnihbíosensorív AT soldatkinoo rozrabotkanovogometodanaosnoveadsorbciifermentanasilikaliteinanobetaceolitedlâsozdaniâamperometričeskihbiosensorov AT ozansoykasapb rozrabotkanovogometodanaosnoveadsorbciifermentanasilikaliteinanobetaceolitedlâsozdaniâamperometričeskihbiosensorov AT akatakurcb rozrabotkanovogometodanaosnoveadsorbciifermentanasilikaliteinanobetaceolitedlâsozdaniâamperometričeskihbiosensorov AT soldatkinap rozrabotkanovogometodanaosnoveadsorbciifermentanasilikaliteinanobetaceolitedlâsozdaniâamperometričeskihbiosensorov AT dzyadevychsv rozrabotkanovogometodanaosnoveadsorbciifermentanasilikaliteinanobetaceolitedlâsozdaniâamperometričeskihbiosensorov AT elskayaav rozrabotkanovogometodanaosnoveadsorbciifermentanasilikaliteinanobetaceolitedlâsozdaniâamperometričeskihbiosensorov |
| first_indexed |
2025-11-25T16:06:42Z |
| last_indexed |
2025-11-25T16:06:42Z |
| _version_ |
1850517581609304064 |
| fulltext |
UDC 577.15.08:543.9
Elaboration of new method of enzyme adsorption
on silicalite and nano beta zeolite for amperometric
biosensor creation
O. O. Soldatkin1, 2, B. Ozansoy Kasap3, B. Akata Kurc3, 4, A. P. Soldatkin1, 2,
S. V. Dzyadevych1, 2, A. V. El’skaya1
1Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
2Institute of High Technologies, Taras Shevchenko National University of Kyiv
64, Volodymyrska Str., Kyiv, Ukraine, 01601
3Central Laboratory, Middle East Technical University
Ankara, Turkey, 06531
4Micro and Nanotechnology Department, Middle East Technical University
Ankara, Turkey, 06531
alex_sold@yahoo.com
Aim. Optimization of a new method of enzyme immobilization for amperometric biosensor creation. Methods.
The amperometric biosensor with glucose oxidase immobilized on zeolites as bioselective elements and platinum
disk electrode as transducers of biochemical signal into the electric one was used in the work. Results. The bio-
sensors based on glucose oxidase adsorbed on zeolites were characterized by a higher sensitivity to glucose and
a better inter-reproducibility. The best analytical characteristics were obtained for the biosensors based on na-
no beta zeolite. It has been found that an increase in the amount of zeolite on the surface of amperometric transdu-
cer may change such biosensor parameters as sensitivity to the substrate and duration of the analysis. Con-
clusions. The proposed method of enzyme immobilization by adsorption on zeolites is shown to be quite promi-
sing in the development of amperometric biosensors and therefore should be further investigated.
Keywords: Biosensor, amperometric transducer, enzyme adsorption, silicalite, nano beta zeolite, glucose oxidase.
Introduction. It is well known that enzyme immobili-
zation plays a key role in the development of biosen-
sors. In recent years, the study and optimization of the
methods of immobilization have attracted considerable
interest of researchers. Special additives injected in the
sensitive membrane upon immobilization can improve
the sensitivity and stability of the immobilized enzyme
[1]. Recently a great deal of attention has been paid to
the immobilization of proteins on nanoparticles, in par-
ticular zeolites, which are able to retain the biological
activity of proteins [2].
Zeolites are an important group of minerals for in-
dustrial and other purposes. They combine rarity, comp-
lexity and unique crystal habits [3]. Formed in cracks or
cavities of volcanic rocks, zeolites are a result of a very
slow progressive metamorphism. Some of them, which
are formed due to barely perceptible heat and pressure,
can be called metamorphic only conditionally whereas
others are found in obviously metamorphic regimes.
Zeolites are of great interest due to their large surface
areas, rigid and well defined pore structures, thermal
stability, and tailorable surface charges with respect to
other types of nanomaterials [4]. Particularly, the nano-
sized pores of zeolites can be adjusted to precisely deter-
mined uniform openings allowing the molecules smal-
ler than the pores diameter to be adsorbed. Various size
of pores in synthetic zeolites opens up a wide range of
possibilities in terms of sieving molecules of different
291
ISSN 0233–7657. Biopolymers and Cell. 2014. Vol. 30. N 4. P. 291–298 doi: http://dx.doi.org/10.7124/bc.0008A3
� Institute of Molecular Biology and Genetics, NAS of Ukraine, 2014
size or shape from gases and liquids [2, 5]. Finally, zeo-
lites are known to be stable under both wet and dry con-
ditions and well-tolerated by microorganisms, which
provides an enhanced compatibility with biochemical
analyses [2]. All these properties make zeolites unique
nanomaterials and promising candidates for the immo-
bilization of biological molecules and for the advanced
analytical tasks.
At present, some variants of biosensors containing
zeolite crystals are known. Zeolites can be embedded in-
to bioselective elements to improve analytical characte-
ristics of biosensors, i. e. their sensitivity to the substra-
te, linear and dynamic ranges, signal inter- and intra-
reproducibility. In [6–8] the use of zeolite in the biosen-
sor structure has been shown to increase the sensitivity
and improve the selectivity. As demonstrated in [4],
zeolites of various kinds can be effectively applied for
the glucose oxidase immobilization while developing
glucose amperometric biosensors to optimize their sen-
sitivity, selectivity and stability. It was also shown that
zeolites can be a basis for the creation of a new type of
amperometric biosensors without mediators since zeoli-
tes can serve as charge carriers [7, 9]. As reported in [10,
11], zeolites are used in conductometric biosensors as
alternative carriers for the enzyme immobilization. Di-
verse variants of co-immobilisation of urease and BEA-
zeolites onto the surface of conductometric transducers
were analyzed in respect to the improvement of analyti-
cal characteristics of biosensors for urea determination
[11]. A similar increase in sensitivity of bioselective ele-
ments was obtained when using BEA-zeolites in biosen-
sors based on pH-sensitive field effect transistors [12–
14]. These studies have shown that the greatest effect of
improving the sensitivity of potentiometric biosensors
is observed with the biomembranes of complex archi-
tecture [13]. The promising results were obtained when
clinoptilolite was used at the development of enzyme
biosensors based on pH-sensitive field-effect transis-
tors [15–18]. The basic idea was to attain high sensiti-
vity of the potentiometric transducer to NH4
+ by depo-
sition of a clinoptilolite layer on the transducer surface
[15]. The described effect was also observed in the bio-
sensors based on urease [17] and urease co-immobili-
zed with arginase [18]. Another option of the use of na-
noscale materials in the design of biosensors has been
proposed in [19], namely silicalite as a carrier for the en-
zyme sorption. The biosensors obtained were charac-
terized by a significantly higher signal reproducibility.
The goal of this study was to check a possibility of
using silicalite and nano beta zeolite for creation of am-
perometric glucose biosensor with enhancement analy-
tical characteristics.
Materials and methods. Materials. Glucose oxida-
se (GOD, EC 1.1.3.4) from Aspergillus niger with acti-
vity 272 U/mg («Genzyme», UK) was used in biore-
cognition elements of biosensors. Bovine serum albu-
min (BSA, fraction V), glucose, glycerol, ascorbic acid,
HEPES, and 50 % aqueous solution of glutaraldehyde
(GA) have been received from «Sigma-Aldrich Chemie»
(Germany). All other chemicals were of p. a. grade.
Synthesis of zeolite crystals. S i l i c a l i t e. To synthe-
size the silicalite solution we used 1TPA-OH : 4 TEOS :
350�H2O. When hydrolysing tetraethoxysilane (TEOS)
with tetrapropylammonium hydroxide (TPA-OH) we
obtained a homogeneous solution by constant stirring
for 6 h at room temperature. The crystallization took
place at 125 °C during one day. The material, which did
not react, was removed from the solution by centrifuga-
tion. The size of silicalite particles was approximately
400 nm.
N a n o b e t a z e o l i t e. The molar composition of
the nano beta zeolite is 0.25 Al2O3 : 25 SiO2 : 490 H2O :
: 9 TEAOH. Silica source was TEOS (98 %, «Al-
drich»). Aluminum isopropoxide (98 %, «Aldrich»),
tetraethylammonium hydroxide (TEA-OH) (20 wt.%
in water, «Aldrich») and doubly distilled water were
used as the other reactants. Aging was continued under
static conditions for 4 h with clear solution. The crystal-
lization was completed within 17 days under static con-
ditions at 100 °C in teflon lined autoclaves. The pro-
duct was purified using centrifugation [20]. Approxi-
mate size of the nano beta zeolite particles is 60 nm.
Characterization of zeolites. The resulting samples
were characterized by powder X-ray diffraction (XRD)
using Ni filtered Cu-K� radiation in a Philips PW
1729. Scanning electron microscopy (SEM) analysis
were performed after AuPb coating in a 400 Quanta
FEI. The energy dispersive X-ray spectroscopy (EDX)
analyses of the all samples were carried out utilizing a
Phoenix EDAX X-ray analyzer equipped with Sapphi-
re super ultrathin window detector attached to the Hita-
chi S-4700 FE-SEM. The nitrogen adsorption/desorp-
292
SOLDATKIN O. O. ET AL.
tion experiments were carried out at by NOVA 3000 se-
ries («Quantachrome Instruments», USA) instrument.
Surface area of the samples were obtained by Multi-
point BET, while the pore size and pore volumes were
obtained by Saito-Foley (SF) and t-plot methods. A
sample preparation method includes outgassing samp-
les under vacuum at 300 K for 4 h before analysis. The
morphologies of the produced silicalite and nano beta
zeolite can be seen in Fig. 1.
According to the X-ray diffraction data presented
in Fig. 2, all samples exhibited the characteristic diffrac-
tion lines of their structures. In Table, Si/Al ratios,
particle sizes, pore sizes, external and total surface area,
micro- and mesopore volume are given.
Design of amperometric transducers. Most of exis-
ting amperometric systems use wire electrodes, which
are structurally rather inconvenient for biosensors [21,
22]. It is much more promising to utilize planar thin-
film electrode systems placed on a single glass or a cera-
mic substrate. This is especially true for the multisensor
systems. For the development of a planar amperometric
multisensor, the design was chosen, in which the electro-
chemical cell consisted of four working electrodes, re-
ference and auxiliary electrodes.
Enzyme immobilization in glutaraldehyde vapour.
GA is a polyfunctional agent which forms covalent bonds
between biocatalytic particles or proteins. Therefore, the
enzyme immobilization with glutaraldehyde is often used
for the development of enzyme biosensors [23]. This im-
mobilization method produces a three-dimensional mat-
rix, in which the enzyme is closely trapped with the
electrode material, thus improving both retention of the
biomolecule on the electrode surface and electrical com-
munication.
To produce a working bioselective membrane, a
mixture of 5 % glucose oxidase (GOX), 5 % BSA, 10 %
293
ELABORATION OF NEW METHOD OF ENZYME ADSORPTION ON SILICALITE AND ZEOLITE
Fig. 1. Scanning electron micro-
scope image of silicalite (A) and
nano beta zeolite (B)
In
te
n
si
ty
,
cp
s
In
te
n
si
ty
,
cp
s
2 theta, deg2 theta, deg
B
0 5 10 15 20 25 30 35 40 45 50 55
0
200
400
600
800
1000
1200
1400
0 5 10 15 20 25 30 35 40 45 50 55
-200
0
200
400
600
800
1000
1200
1400
1600
1800A
Fig. 2. XRD spectrum of synthesized zeolites: A – nano beta zeolite; B – silicalite
glycerol was prepared in 20 mM phosphate buffer, pH
7.2. This mixture was deposited on the transducer sur-
face using Eppendorf microsampler (total volume 0.1–
2.5 �l) until the working surface is covered completely.
The volume of each membrane was about 0.05 µl. All
membrane mixtures contained the same total amount of
protein.
Afterwards, the transducers with membrane mixtu-
res were placed in saturated vapor of GA for 15–25 min,
dried in the air at room temperature for 15 min, and
prior to usage washed with the buffer solution from un-
bound GA.
Dip-coating zeolite onto transducers. A zeolite layer
was formed on the transducer surface by dip-coating.
10 % zeolite solution in 5 mM PBS, pH 6.5, was used.
0.4 �l of the solution was deposited onto all active zo-
nes of multitransducer, then it was heated during 3 min
to 150 °C. This temperature had no effect on silicalite
and did not influence the transducer working parameters.
Modification procedure for zeolite monolayers. First-
ly, we tried to attach zeolite to the electrodes surface but
failed in our attempts. Then, we used a layer of poly(ethy-
leneimine) (PEI) between zeolite and electrode surface.
In this case, the zeolite attachment was attained but
there appeared a problem of homogeneity. To solve it,
we used mucasol (1/6 v/v) in distilled water, which gave
good results due to changing the surface hydrophility.
The electrode surfaces were dip-coated with muca-
sol for 15 min, rinsed with copious amount of distilled
water and dried under air. For the formation of homoge-
neous layers of PEI, both dip-coating and spin-coating
techniques had been tried. Since spin-coating gave mo-
re homogeneous layers, it was used further on. The ef-
fects of PEI solvent type (hot water and ethanol), PEI
concentration (0.5, 1, 3, 5 %), spin-coating time (3000
rpm 15 s, 7 s), calcination temperature (100, 90, 50 °C)
were investigated. The obtained monolayers were che-
cked with microscope. The suitable conditions for zeo-
lite monolayer production were chosen as follows: spin-
coating with 0.5 % PEI in ethanol at 3000 rpm during
15 s, and calcination at temperature 90 °C for 30 min.
The synthesized zeolites were directly attached to
the obtained electrode surfaces simply by rubbing zeo-
lites with a finger, a technique called direct attachment.
These electrodes were used in further studies.
Enzyme adsorption on zeolites. 0.1 �l of 5 % GOD
solution in 20 mM phosphate buffer, pH 6.5 was depo-
sited onto the active zones of multitransducer previous-
ly coated with silicalite, then the transducer was expo-
sed to complete air-drying (for 20 min). Neither GA
nor any other auxiliary compounds were used. Next, the
transducers were submerged into the working buffer
for 20–30 min to wash off the unbound enzyme. After
experiments, the transducer surface was cleaned from
enzyme with ethanol-wetted cotton.
Experimental setup for amperometric measure-
ments. A three-electrode scheme of amperometric ana-
lysis was used. The working amperometric transducers
were developed, which were connected to the Palm
Sens potentiostat (Netherlands) along with the auxilia-
ry nickel electrode (with a much larger area of the ni-
ckel surface compared to the working electrode) and
the Ag/AgCl reference electrode.
Each electrode has its own function in the ampero-
metric analysis. When positive potential is applied to
the working electrode, all the molecules in solution on
the electrode surface are oxidized and an electron tran-
sition from the solution to the electrode takes place. If
there was no additional electrode, a large potential diffe-
rence would be generated due to the stoichiometric im-
balance. The function of the auxiliary electrode is to form
the external circuit providing the electrons a pathway
back to the solution. Obviously, this results in the reduc-
tion process on the auxiliary electrode, equivalent to the
oxidation process on the working electrode. This flow
of electrons generates a current in the amperometric sen-
sor. The third electrode is a reference electrode, which
should contain a known chemical compound, which in-
294
SOLDATKIN O. O. ET AL.
Sample name Si/Ala Part. size (nm)b Pore size (nm)c Sext (m2/g)d Stotal (m2/g)e Pore volume (cc/g)c
Nano beta zeolite 26.54 ~ 60 0.43 190 472 0.20
Silicalite No Al ~ 400 0.45 52 185 0.08
N o t e. Measured by:
a
EDX;
b
SEM;
c
Saito-Foley (SF) method;
d
t-plot method;
e
BET.
Characteristics of zeolites
cludes both forms of the redox pair. Usually it is either
Hg/HgCl2 (saturated calomel electrode) or Ag/AgCl
(chloro-silver electrode). Since the applied potential is
fixed, the reference electrode has a stable point, which
can be also fixed on the working electrode for measure-
ment. That is, the applied potential is controlled between
the working and reference electrodes, whereas the cur-
rent is measured between the working and auxiliary
electrodes [24].
All measurements were carried out in an open mea-
suring cell with permanent stirring at a constant poten-
tial of +1 V vs Ag/AgCl reference electrode.
Measurement procedure. Measurements were car-
ried out in 20 mM HEPES, pH 7.4, in a voltampero-
metric mode at a constant potential of +1 V vs Ag/AgCl
reference electrode in an open cell with vigorous stir-
ring. The substrate concentration in the measuring cell
was specified by the introduction of aliquots of the sub-
strate standard stock solution to the working buffer. All
experiments were performed in at least three series.
Results and discussion. The main goal of this re-
search was to develop a new amperometric biosensor
with enhanced analytical characteristics by using a no-
vel method of immobilization of the enzyme based on
its adsorption on zeolites. This method was first propo-
sed for conductometric biosensors [19]. In this work we
presented our attempt to use the mentioned method and
to upgrade it for the amperometric transducers. The en-
zyme GOD was chosen as one of the most stable and
studied enzymes.
The operation of amperometric biosensor for gluco-
se determination is based on the enzymatic reaction
with consequent hydrogen peroxide oxidation on the
working electrode, which occurs when applying neces-
sary potential and can be directly registered by the am-
perometric transducer. In the presense of glucose, the
reactions take place on the electrode surface as follows:
GOD
D-glucose + O2 � D-gluconic acid + H2O2; (1)
+ 1000 mV
H2O2 � 2H+ + 2e– . (2)
In this case, the biosensor response is proportional
to the glucose concentration. At first, we fabricated a
number of biosensors based on GOD immobilized by
the method of enzyme adsorption on silicalite proposed
in [19]. In details the immobilization technique is des-
cribed in «Materials and Methods». The biosensors sen-
sitivity to glucose was tested. The results obtained did
not justify our expectations – it appeared that, along with
good sensitivity, the biosensor responses were very slow
and so biosensors lost one of their main advantages –
fast analysis. For example, the response to 1 mM gluco-
se amounted 40 min. We believe it is an effect of too
thick layer of silicalite formed on the transducer surfa-
ce by dip-coating. However, we considered that the va-
lue of response of the biosensors based on GOD adsor-
bed on silicalite was 3 times more than that of the bio-
sensors based on the traditional methods of GOD immo-
bilization in GA vapor. Therefore, we decided to modi-
fy the method of zeolite application on the surface of
amperometric transducer in order to obtain a mono-
layer of zeolite. In details the technique proposed is des-
cribed in «Materials and Methods». Using this tech-
nique we created two types of biosensors based on sili-
calite and nano beta zeolite. The characteristics of these
biosensors were compared with those of the biosensors
based on the traditional immobilization in GA vapor.
Since the sensitivity and linear range of measure-
ment are the most important working characteristics of
any biosensor, we investigated an influence of different
types of immobilization on these parameters. The cali-
bration curves were obtained for each biosensor. The li-
near ranges of measurement for all biosensors were iden-
tical, whereas sensitivities differed. As shown in Fig. 3,
295
ELABORATION OF NEW METHOD OF ENZYME ADSORPTION ON SILICALITE AND ZEOLITE
0,0 0,5 1,0 1,5 2,0 2,5 3,0
0
50
100
150
200
250
R
es
p
o
n
se
,
n
A
Glucose, mM
1
2
3
Fig. 3. Calibration curves for glucose detection by biosensors based on
GOD adsorbed on nano beta (1) and silicalite (2), and GOD immobili-
zed in GA vapor (3). Measurements were carried out in 5 mM HEPES
buffer, pH 7.2
the biosensors based on using both zeolites were charac-
terized by a higher sensitivity than the biosensors based
on the GOD immobilized in GA vapor.
It is known, that one of the most important biosen-
sor characteristics is the reproducibility of the biosensor
signal during operation. Therefore, it was necessary to
explore this option for the biosensors with the GOD ad-
sorbed on monolayers of zeolites and compare it with
that for the biosensors based on the GOD immobilized
in GA vapor.
At the next stage, we studied reproducibility of res-
ponses of all three biosensors during several hours of
continuous operation. One measurement of glucose took
3–5 min. The interval between measurements was about
20 min, during this time we washed the biosensors from
substrates by working buffer. We did not reveal any
considerable decrease in responses of all three sensors
after 10 subsequent measurements. As seen (Fig. 4), all
biosensors demonstrated high signal reproducibility.
The relative standard deviation of responses to glucose
was similar for these biosensors (about 8 %).
Since the reproducibility of biosensor manufac-
turing is a well-known challenge in biosensorics, we
should prove that this characteristic for the proposed by
us procedure of enzyme immobilization, i. e. the enzy-
me adsorption on zeolite monolayer, is not worse than
for the immobilization in GA vapor. Therefore, we che-
cked reproducibility of manufacturing of all three bio-
sensors (with and without zeolite) and compared the re-
sults obtained (Fig. 5). As can be seen, the biosensors
based on the GOD adsorption on nano beta zeolite had
better reproducibility as compared to the biosensors with
the GOD adsorbed on silicalite, whereas the variant of
enzyme immobilization in GA vapor was the worst.
Summing up all the experiments conducted, we re-
vealed that the biosensors based on the GOD adsorbed
on nano beta zeolite had the best parameters. This type
of immobilization was the most stable and reproducible,
and the biosensors were characterized with the highest
and fastest responses. However, though the promising
results were obtained, we made further endeavour for
improving the biosensors sensitivity by an increase in
the number of nano beta zeolite particles on the elect-
rode surface. It is known that, increasing the polymer
concentration in course of applying zeolite monolay-
ers, it is possible to increase an amount of zeolite on the
surface of amperometric transducer. Nevertheless, as it
was shown at the beginning of the work, the zeolite layer
formed on the transducer surface by dip-coating proce-
dure is too thick, which results, along with good sensiti-
vity, in essential increase in the analysis time. Therefo-
re, a compromise was required, i. e. it was necessary to
find the immobilization conditions, which would ensu-
re the greatest sensitivity to the substrate and short ana-
lysis time. The results of this study are shown in Fig. 6.
As can be seen at a higher polymer concentration used
in the procedure of zeolite application, the value of bio-
sensor response increases, but the response time increa-
296
SOLDATKIN O. O. ET AL.
R
es
p
o
n
se
,
n
A
Time, min
50 150 250 350 450 550
0
50
100
150
200
250
1
2
3
Fig. 4. Reproducibility of responses of biosensors based on GOD adsor-
bed on nano beta (1) and silicalite (2), and GOD immobilized in GA va-
por (3). Glucose concentration – 1 mM. Measurements were carried out
in 20 mM HEPES buffer, pH 7.2
GOD immobilized
in GA vapor
GOD adsorbed
on silicalite
R
es
p
o
n
se
,
n
A
0
40
80
120
160
200
240
RSD = 38.9 %
RSD = 12.0 %
RSD = 12.6 %
GOD adsorbed
on Nano Beta
Fig. 5. Reproducibility of preparation of biosensors based on GOD ad-
sorbed on nano beta (1) and silicalite (2), and GOD immobilized in GA
vapor (3). Glucose concentration – 1 mM. Measurements were carried
out in 20 mM HEPES buffer, pH 7.2
ses as well. That is why we choose 0.5 % PEI for zeolite
monolayer creation. In this case, we obtained enough
high response and short response time.
Conclusions. The enzyme adsorption on zeolites
has been verified as a method of immobilization of bio-
logical membranes for the development of amperomet-
ric biosensors with improved analytical characteristics.
For comparison the most common traditional method
of immobilization in glutaraldehyde vapor has been
chosen. The best results were obtained for the biosen-
sor based on immobilization with nano beta zeolite par-
ticles, the worst – for the biosensors based on the immo-
bilization in glutaraldehyde. Besides sensitivity, stabi-
lity and other analytical characteristics, it has been
shown that the proposed biosensor based on nano beta
zeolite particles is characterized by good repeatability
of responses (error did not exceed 8 %) and reproduci-
bility of biosensor manufacturing (error did not exceed
13 %).
It has been shown that the proposed method of the
enzyme immobilization by adsorption on zeolites is qui-
te promising for further application in the development
of amperometric biosensors.
Funding. The authors gratefully acknowledge the fi-
nancial support of this study by Project European IRSES-
318524-NANODEV. Furthermore, this study was partly
supported by NASU in the frame of Scientific and Tech-
nical Program «Sensor systems for medico-ecological
and industrial-technological requirement: metrological
support and experimental operation».
Ðîçðîáêà íîâîãî ìåòîäó íà îñíîâ³ àäñîðáö³¿ ôåðìåíòó
íà ñèë³êàë³ò³ òà íàíî-áåòà öåîë³ò³ äëÿ ñòâîðåííÿ
àìïåðîìåòðè÷íèõ á³îñåíñîð³â
O. O. Ñîëäàòê³í, Á. Îçàíñîé Êàñàï, Á. Àêàòà Êóðê,
Î. Ï. Ñîëäàòê³í, Ñ. Â. Äçÿäåâè÷, Ã. Â. ªëüñüêà
Ðåçþìå
Ìåòà. Îïòèì³çàö³ÿ íîâîãî ìåòîäó ³ììîá³ë³çàö³¿ ôåðìåíò³â äëÿ
ðîçðîáêè àìïåðîìåòðè÷íèõ á³îñåíñîð³â. Ìåòîäè. Âèêîðèñòàíî
³ììîá³ë³çîâàíó ãëþêîçîîêñèäàçó íà öåîë³ò³ ÿê á³îñåëåêòèâíèé åëå-
ìåíò á³îñåíñîðà òà ïëàòèíîâèé äèñêîâèé åëåêòðîä – ÿê àìïåðî-
ìåòðè÷íèé ïåðåòâîðþâà÷ á³îõ³ì³÷íîãî ñèãíàëó â åëåêòðè÷íèé. Ðå-
çóëüòàòè. Á³îñåíñîð íà îñíîâ³ ãëþêîçîîêñèäàçè, àäñîðáîâàíî¿ íà
öåîë³òàõ, âèð³çíÿºòüñÿ âèñîêîþ ÷óòëèâ³ñòþ äî ãëþêîçè òà ïîêðà-
ùåíîþ ³íòåð-â³äíîâëþâàí³ñòþ âèãîòîâëåííÿ á³îñåíñîð³â. Íàéêðà-
ù³ àíàë³òè÷í³ õàðàêòåðèñòèêè ïðèòàìàíí³ á³îñåíñîðó íà îñíîâ³
íàíî-áåòà öåîë³òó. Âñòàíîâëåíî, ùî ïðè çì³í³ ê³ëüêîñò³ öåîë³ò³â
íà ïîâåðõí³ àìïåðìåòðè÷íîãî ïåðåòâîðþâà÷à ìîæíà âàð³þâàòè
ïàðàìåòðè á³îñåíñîðà, òàê³ ÿê ÷óòëèâ³ñòü äî ñóáñòðàòó òà ÷àñ
àíàë³çó. Âèñíîâêè. Ïîêàçàíî, ùî çàïðîïîíîâàíèé ìåòîä ³ììîá³ë³-
çàö³¿, à ñàìå – àäñîðáö³ÿ ôåðìåíò³â íà öåîë³òàõ º äóæå ïåðñïåê-
òèâíèì ïðè ðîçðîáö³ àìïåðîìåòðè÷íèõ á³îñåíñîð³â.
Êëþ÷îâ³ ñëîâà: á³îñåíñîð, àìïåðîìåòðè÷íèé ïåðåòâîðþâà÷, àä-
ñîðáö³ÿ ôåðìåíò³â, ñèë³êàë³ò, íàíî-áåòà öåîë³ò, ãëþêîçîîêñèäàçà.
Ðîçðàáîòêà íîâîãî ìåòîäà íà îñíîâå àäñîðáöèè ôåðìåíòà
íà ñèëèêàëèòå è íàíî-áåòà öåîëèòå äëÿ ñîçäàíèÿ
àìïåðîìåòðè÷åñêèõ áèîñåíñîðîâ.
À. À. Ñîëäàòêèí, Á. Îçàíñîé Êàñàï, Á. Àêàòà Êóðê,
À. Ï. Ñîëäàòêèí, Ñ. Â. Äçÿäåâè÷, À. Â. Åëüñêàÿ
Ðåçþìå
Öåëü. Îïòèìèçàöèÿ íîâîãî ìåòîäà èììîáèëèçàöèè ôåðìåíòîâ
äëÿ ðàçðàáîòêè àìïåðîìåòðè÷åñêèõ áèîñåíñîðîâ. Ìåòîäû. Èñ-
ïîëüçîâàëè èììîáèëèçîâàííóþ ãëþêîçîîêñèäàçó íà öåîëèòàõ êàê
áèîñåëåêòèâíûé ýëåìåíò áèîñåíñîðà è ïëàòèíîâûé äèñêîâûé ýëå-
êòðîä – êàê àìïåðîìåòðè÷åñêèé ïðåîáðàçîâàòåëü áèîõèìè÷åñêî-
ãî ñèãíàëà â ýëåêòðè÷åñêèé. Ðåçóëüòàòû. Áèîñåíñîð íà îñíîâå
ãëþêîçîîêñèäàçû, àäñîðáèðîâàííîé íà öåîëèòàõ, îòëè÷àåòñÿ âû-
ñîêîé ÷óâñòâèòåëüíîñòüþ ê ãëþêîçå è óëó÷øåííîé èíòåð-âîñïðî-
èçâîäèìîñòüþ ïðèãîòîâëåíèÿ áèîñåíñîðîâ. Íàèëó÷øèìè àíàëè-
òè÷åñêèìè õàðàêòåðèñòèêàìè îáëàäàåò áèîñåíñîð íà îñíîâå íà-
íî-áåòà öåîëèòà. Óñòàíîâëåíî, ÷òî ïðè èçìåíåíèè êîëè÷åñòâà
öåîëèòîâ íà ïîâåðõíîñòè àìïåðîìåòðè÷åñêîãî ïðåîáðàçîâàòåëÿ
ìîæíî ìåíÿòü ïàðàìåòðû áèîñåíñîðà, òàêèå êàê ÷óâñòâèòåëü-
íîñòü ê ñóáñòðàòó è âðåìÿ àíàëèçà. Âûâîäû. Ïîêàçàíî, ÷òî ïðåä-
ëîæåííûé ìåòîä èììîáèëèçàöèè, à èìåííî – àäñîðáöèÿ ôåðìåí-
òîâ íà öåîëèòàõ ÿâëÿåòñÿ ïåðñïåêòèâíûì ïðè ðàçðàáîòêå àìïå-
ðîìåòðè÷åñêèõ áèîñåíñîðîâ.
Êëþ÷åâûå ñëîâà: áèîñåíñîð, àìïåðîìåòðè÷åñêèé ïðåîáðàçî-
âàòåëü, àäñîðáöèÿ ôåðìåíòîâ, ñèëèêàëèò, íàíî-áåòà öåîëèò,
ãëþêîçîîêñèäàçà.
REFERENCES
1. Vidinha P, Augusto V, Nunes J, Lima JC, Cabral JM, Barreiros
S. Probing the microenvironment of sol-gel entrapped cutinase:
the role of added zeolite NaY. J Biotechnol. 2008;135(2):181–9.
297
ELABORATION OF NEW METHOD OF ENZYME ADSORPTION ON SILICALITE AND ZEOLITE
Polymer concentration (PEI), %
R
es
p
o
n
se
,
n
A
0 1 2 3 4 5
0
100
200
300
400
500
600
700
0
20
40
60
80
T
im
e,
m
in
Fig. 6. Dependences of value (1) and time (2) of biosensor response on
different concentration of polymer on amperometric electrode surface.
Glucose concentration – 1 mM. Measurements were carried out in 20
mM HEPES buffer, pH 7.2
2. Tavolaro A, Tavolaro P, Drioli E. Zeolite inorganic supports for
BSA immobilization: comparative study of several zeolite crystals
and composite membranes. Colloids Surf B Biointerfaces. 2007;
55(1):67–76.
3. Stryczek S, Gonet A, Wisniowski R, Brylicki W. The Influence of
clinoptilolite on technological properties of fresh and set slag-al-
kaline slurries. Acta Montanistica Slovaca. 2006; 11(1): 198–203.
4. Goriushkina TB, Akata Kurc B, Sacco Jr A, Dzyadevych SV. Ap-
plication of zeolites for immobilization of glucose oxidase in am-
perometric biosensors. Sensor Electronics and Microsystem
Technologies. 2010; 1(7), (1):36–43.
5. Mazloum Ardakani M, Akrami Z, Kazemian H, Zare HR. Elect-
rocatalytic characteristics of uric acid oxidation at graphite–zeo-
lite-modified electrode doped with iron (III). J Electroanal Chem.
2006; 586(1):31–8.
6. Granda Valdes M, Perez-Cordoves AI, Diaz-Garcia ME. Zeoli-
tes and zeolite-based materials in analytical chemistry. Trends
Analyt Chem. 2006; 25(1):24–30.
7. Xie Y, Liu H, Hu N. Layer-by-layer films of hemoglobin or myo-
globin assembled with zeolite particles: electrochemistry and
electrocatalysis. Bioelectrochemistry. 2007;70(2):311–9.
8. Zhou J, Li P, Zhang S, et al. Zeolite-modified microcantilever gas
sensor for indoor air quality control. Sens Actuators B Chem.
2003; 94(3):337–42.
9. Serban S, El Murr N. Synergetic effect for NADH oxidation of
ferrocene and zeolite in modified carbon paste electrodes. New
approach for dehydrogenase based biosensors. Biosens Bioelect-
ron. 2004;20(2):161–6.
10. Soy E, Pyeshkova V, Arkhypova V, et al. Potentialities of zeoli-
tes for immobilization of enzymes in conductometric biosen-
sors. Sensor Electronics And Microsystem Technologies. 2010;
1(7),(1):28–35.
11. Kirdeciler SK, Soy E, Ozturk S, et al. A novel urea conducto-
metric biosensor based on zeolite immobilized urease. Talanta.
2011;85(3): 1435–41.
12. Soldatkin OO, Soy E, Errachid A, et al. Influence of compo-
sition of zeolite/enzyme nanobiocomposites on analytical cha-
racteristics of urea biosensor based on ion-selective field-effect
transistors. Sensor Lett. 2011; 9(6):2320–6.
13. Soldatkin OO, Kucherenko IS, Shelyakina MK, et al. Applica-
tion of different zeolite for improvement of the characteristics of
a pH-FET biosensor based on immobilized urease. Electroana-
lysis. 2013; 25(2):468–74.
14. Soy E, Arkhypova V, Soldatkin O, et al. Investigation of charac-
teristics of urea and butyrylcholine chloride biosensors based on
ion-selective field-effect transistors modified by the incorpora-
tion of heat-treated zeolite Beta crystals. Mater Sci Eng C. 2012;
32(7):1835–42.
15. Saiapina OY, Dzyadevych SV, Walcarius A, Jaffrezic-Renault
N. A novel highly sensitive zeolite-based conductometric micro-
sensor for ammonium determination. Anal Lett. 2012; 45(11):
1467–84.
16. Shelyakina M, Soldatkin O, Arkhypova V, Akata B, Jaffrezic-Re-
nault N, Dzyadevych S. Application of clinoptiolite for moderni-
zation of urease biosensor based on pH-sensitive field-effect
transistors. Sensor Electronics And Microsystem Technologies.
2011; 2(8)(2):61–9.
17. Saiapina OY, Pyeshkova VM, Soldatkin OO, et al. Conductomet-
ric enzyme biosensors based on natural zeolite clinoptilolite for
urea determination. Mater Sci Eng C. 2011;31(7): 1490–7.
18. Saiapina OY, Matsishin M, Pyeshkova VM, et al. Application of
ammonium-selective zeolite for enhancement of conductomet-
ric bienzyme biosensor for L-arginine detection. Sensor Electro-
nics and Microsystem Technologies. 2012; 3(9), (4):49–66.
19. Kucherenko IS, Soldatkin OO, Kasap B, et al. Elaboration of
urease adsorption on silicalite for biosensor creation. Electro-
analysis. 2012; 24 (6):1380–5.
20. Prokesova P, Mintova S, Cejka J, Bein T. Preparation of nanosi-
zed micro/mesoporous composites via simultaneous synthesis of
Beta/MCM-48 phases. Microporous Mesoporous Mater. 2003;
64(1–3):165–74.
21. Dzyadevych SV. Amperometric biosensors. Key work principles
and features of transducers of different generations. Biopolym
Cell. 2002; 18(1):13–25.
22. Soldatkin AP, Dzyadevych SV, Korpan YI, et al. Biosensors. A
quarter of a century of R&D experience. Biopolym Cell. 2013;
29(3):188–206.
23. Goriushkina TB, Orlova AP, Smutok OV, Gonchar MV, Soldatkin
AP, Dzyadevych SV. Application of L-lactate-cytochrome c- oxi-
doreductase for development of amperometric biosensor for L-
lactate determination. Biopolym Cell. 2009; 25(3):194–203.
24. Dzyadevych SV, Arkhypova VN, Soldatkin AP, El’skaya AV,
Martelet C, Jaffrezic-Renault N. Amperometric enzyme biosen-
sors: past, present and future. IRBM. 2008; 29(2–3):171–80.
Received 15.05.14
298
SOLDATKIN O. O. ET AL.
|