Integrability by quadratures for systems of involutive vector fields
Starting from results and ideas of S. Lie anb E. Cartan, we give a systematic and geometric treatment of integrability dy quadratures of involutive systems of vector filds, showing how-a-generalization of the usual multiplier can-de constructed with the aid of closed differential forms and enough sy...
Збережено в:
| Опубліковано в: : | Український математичний журнал |
|---|---|
| Дата: | 1991 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
1991
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/154478 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Integrability by quadratures for systems of involutive vector fields/ P. Basarab-Horwath // Український математичний журнал. — 1991. — Т. 43, № 10. — С. 1330–1337. — Бібліогр.: 9 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-154478 |
|---|---|
| record_format |
dspace |
| spelling |
Basarab-Horwath, P. 2019-06-15T15:58:37Z 2019-06-15T15:58:37Z 1991 Integrability by quadratures for systems of involutive vector fields/ P. Basarab-Horwath // Український математичний журнал. — 1991. — Т. 43, № 10. — С. 1330–1337. — Бібліогр.: 9 назв. — англ. 1027-3190 https://nasplib.isofts.kiev.ua/handle/123456789/154478 517.9 Starting from results and ideas of S. Lie anb E. Cartan, we give a systematic and geometric treatment of integrability dy quadratures of involutive systems of vector filds, showing how-a-generalization of the usual multiplier can-de constructed with the aid of closed differential forms and enough symmetry vector fields. This leads us to explicit formulas for the indepen-. dent integrals. These results allow us to identify symmetries with integral invariants in the sense of Poincare and Cartan. A further (new) result gives the equivalence of integrability by quadratures and the existence of solvable structures, these latter being generalizations. of solvable algebras. en Інститут математики НАН України Український математичний журнал Статті Integrability by quadratures for systems of involutive vector fields Интегрирование в квадратурах инволютивных систем векторных полей Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Integrability by quadratures for systems of involutive vector fields |
| spellingShingle |
Integrability by quadratures for systems of involutive vector fields Basarab-Horwath, P. Статті |
| title_short |
Integrability by quadratures for systems of involutive vector fields |
| title_full |
Integrability by quadratures for systems of involutive vector fields |
| title_fullStr |
Integrability by quadratures for systems of involutive vector fields |
| title_full_unstemmed |
Integrability by quadratures for systems of involutive vector fields |
| title_sort |
integrability by quadratures for systems of involutive vector fields |
| author |
Basarab-Horwath, P. |
| author_facet |
Basarab-Horwath, P. |
| topic |
Статті |
| topic_facet |
Статті |
| publishDate |
1991 |
| language |
English |
| container_title |
Український математичний журнал |
| publisher |
Інститут математики НАН України |
| format |
Article |
| title_alt |
Интегрирование в квадратурах инволютивных систем векторных полей |
| description |
Starting from results and ideas of S. Lie anb E. Cartan, we give a systematic and geometric treatment of integrability dy quadratures of involutive systems of vector filds, showing how-a-generalization of the usual multiplier can-de constructed with the aid of closed differential forms and enough symmetry vector fields. This leads us to explicit formulas for the indepen-. dent integrals. These results allow us to identify symmetries with integral invariants in the sense of Poincare and Cartan. A further (new) result gives the equivalence of integrability by quadratures and the existence of solvable structures, these latter being generalizations. of solvable algebras.
|
| issn |
1027-3190 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/154478 |
| fulltext |
0048
0049
0050
0051
0052
0053
0054
0055-k
|
| citation_txt |
Integrability by quadratures for systems of involutive vector fields/ P. Basarab-Horwath // Український математичний журнал. — 1991. — Т. 43, № 10. — С. 1330–1337. — Бібліогр.: 9 назв. — англ. |
| work_keys_str_mv |
AT basarabhorwathp integrabilitybyquadraturesforsystemsofinvolutivevectorfields AT basarabhorwathp integrirovanievkvadraturahinvolûtivnyhsistemvektornyhpolei |
| first_indexed |
2025-11-26T20:28:23Z |
| last_indexed |
2025-11-26T20:28:23Z |
| _version_ |
1850773510586105856 |