Hall operators on the set of formations of finite groups
Let π be a nonempty set of primes and let F be a saturated formation of all finite soluble π-groups. It is constructed the saturated formation consisting of all finite π-soluble groups whose F-projectors contain a Hall π-subgroup.
Gespeichert in:
| Veröffentlicht in: | Algebra and Discrete Mathematics |
|---|---|
| Datum: | 2010 |
| Hauptverfasser: | , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2010
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/154492 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Hall operators on the set of formations of finite groups / A.P. Mekhovich, N.N. Vorob’ev, N.T. Vorob’ev // Algebra and Discrete Mathematics. — 2010. — Vol. 9, № 1. — С. 72–78. — Бібліогр.: 19 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-154492 |
|---|---|
| record_format |
dspace |
| spelling |
Mekhovich, A.P. Vorob’ev, N.N. Vorob’ev, N.T. 2019-06-15T16:07:19Z 2019-06-15T16:07:19Z 2010 Hall operators on the set of formations of finite groups / A.P. Mekhovich, N.N. Vorob’ev, N.T. Vorob’ev // Algebra and Discrete Mathematics. — 2010. — Vol. 9, № 1. — С. 72–78. — Бібліогр.: 19 назв. — англ. 1726-3255 2001 Mathematics Subject Classification:20D10 https://nasplib.isofts.kiev.ua/handle/123456789/154492 Let π be a nonempty set of primes and let F be a saturated formation of all finite soluble π-groups. It is constructed the saturated formation consisting of all finite π-soluble groups whose F-projectors contain a Hall π-subgroup. Research of the second author is partially supported by Belarussian Republic Foun-dation of Fundamental Researches (BRFFI, grant F08M-118) en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics Hall operators on the set of formations of finite groups Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Hall operators on the set of formations of finite groups |
| spellingShingle |
Hall operators on the set of formations of finite groups Mekhovich, A.P. Vorob’ev, N.N. Vorob’ev, N.T. |
| title_short |
Hall operators on the set of formations of finite groups |
| title_full |
Hall operators on the set of formations of finite groups |
| title_fullStr |
Hall operators on the set of formations of finite groups |
| title_full_unstemmed |
Hall operators on the set of formations of finite groups |
| title_sort |
hall operators on the set of formations of finite groups |
| author |
Mekhovich, A.P. Vorob’ev, N.N. Vorob’ev, N.T. |
| author_facet |
Mekhovich, A.P. Vorob’ev, N.N. Vorob’ev, N.T. |
| publishDate |
2010 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
Let π be a nonempty set of primes and let F be a saturated formation of all finite soluble π-groups. It is constructed the saturated formation consisting of all finite π-soluble groups whose F-projectors contain a Hall π-subgroup.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/154492 |
| citation_txt |
Hall operators on the set of formations of finite groups / A.P. Mekhovich, N.N. Vorob’ev, N.T. Vorob’ev // Algebra and Discrete Mathematics. — 2010. — Vol. 9, № 1. — С. 72–78. — Бібліогр.: 19 назв. — англ. |
| work_keys_str_mv |
AT mekhovichap halloperatorsonthesetofformationsoffinitegroups AT vorobevnn halloperatorsonthesetofformationsoffinitegroups AT vorobevnt halloperatorsonthesetofformationsoffinitegroups |
| first_indexed |
2025-11-28T02:27:44Z |
| last_indexed |
2025-11-28T02:27:44Z |
| _version_ |
1850853307391672320 |