On a question of Wiegold and torsion images of Coxeter groups
We answer positively a question raised byWiegold in Kourovka Notebook and show that every Coxeter group that is not virtually abelian and for which all labels in the corresponding Coxeter graph are powers of 2 or infinity can be mapped onto uncountably many infinite 2-groups which, in addition, may...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2009 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2009
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/154495 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | On a question of Wiegold and torsion images of Coxeter groups / R. Grigorchuk// Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 4. — С. 78–96. — Бібліогр.: 49 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-154495 |
|---|---|
| record_format |
dspace |
| spelling |
Grigorchuk, R. 2019-06-15T16:09:01Z 2019-06-15T16:09:01Z 2009 On a question of Wiegold and torsion images of Coxeter groups / R. Grigorchuk// Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 4. — С. 78–96. — Бібліогр.: 49 назв. — англ. 1726-3255 2010 Mathematics Subject Classification:20F50,20F55,20E08. https://nasplib.isofts.kiev.ua/handle/123456789/154495 We answer positively a question raised byWiegold in Kourovka Notebook and show that every Coxeter group that is not virtually abelian and for which all labels in the corresponding Coxeter graph are powers of 2 or infinity can be mapped onto uncountably many infinite 2-groups which, in addition, may be chosen to be just-infinite, branch groups of intermediate growth. The author expresses his thanks to T. Januszkiewicz, V. Nekrashevych, Z.ˇSuni ́c,and I. Subbotin for their valuable remarks en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics On a question of Wiegold and torsion images of Coxeter groups Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
On a question of Wiegold and torsion images of Coxeter groups |
| spellingShingle |
On a question of Wiegold and torsion images of Coxeter groups Grigorchuk, R. |
| title_short |
On a question of Wiegold and torsion images of Coxeter groups |
| title_full |
On a question of Wiegold and torsion images of Coxeter groups |
| title_fullStr |
On a question of Wiegold and torsion images of Coxeter groups |
| title_full_unstemmed |
On a question of Wiegold and torsion images of Coxeter groups |
| title_sort |
on a question of wiegold and torsion images of coxeter groups |
| author |
Grigorchuk, R. |
| author_facet |
Grigorchuk, R. |
| publishDate |
2009 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
We answer positively a question raised byWiegold in Kourovka Notebook and show that every Coxeter group that is not virtually abelian and for which all labels in the corresponding Coxeter graph are powers of 2 or infinity can be mapped onto uncountably many infinite 2-groups which, in addition, may be chosen to be just-infinite, branch groups of intermediate growth.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/154495 |
| citation_txt |
On a question of Wiegold and torsion images of Coxeter groups / R. Grigorchuk// Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 4. — С. 78–96. — Бібліогр.: 49 назв. — англ. |
| work_keys_str_mv |
AT grigorchukr onaquestionofwiegoldandtorsionimagesofcoxetergroups |
| first_indexed |
2025-12-07T13:12:55Z |
| last_indexed |
2025-12-07T13:12:55Z |
| _version_ |
1850855313274568704 |