Thin systems of generators of groups

A subset T of a group G with the identity e is called k-thin (k∈N) if |A∩gA| ≤ k, |A∩Ag| ≤ k for every g∈G, g≠e. We show that every infinite group G can be generated by some 2-thin subset. Moreover, if G is either Abelian or a torsion group without elements of order 2, then there exists a 1-thin sys...

Full description

Saved in:
Bibliographic Details
Published in:Algebra and Discrete Mathematics
Date:2010
Main Author: Lutsenko, I.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2010
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/154507
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Thin systems of generators of groups / I. Lutsenko // Algebra and Discrete Mathematics. — 2010. — Vol. 9, № 2. — С. 106–112. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-154507
record_format dspace
spelling Lutsenko, I.
2019-06-15T16:21:07Z
2019-06-15T16:21:07Z
2010
Thin systems of generators of groups / I. Lutsenko // Algebra and Discrete Mathematics. — 2010. — Vol. 9, № 2. — С. 106–112. — Бібліогр.: 6 назв. — англ.
1726-3255
2000 Mathematics Subject Classification:20F05, 20F99.
https://nasplib.isofts.kiev.ua/handle/123456789/154507
A subset T of a group G with the identity e is called k-thin (k∈N) if |A∩gA| ≤ k, |A∩Ag| ≤ k for every g∈G, g≠e. We show that every infinite group G can be generated by some 2-thin subset. Moreover, if G is either Abelian or a torsion group without elements of order 2, then there exists a 1-thin system of generators of G. For every infinite group G, there exist a 2-thin subset X such that G=XX⁻¹ ∪ X⁻¹X, and a 4-thin subset Y such that G=YY⁻¹.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Thin systems of generators of groups
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Thin systems of generators of groups
spellingShingle Thin systems of generators of groups
Lutsenko, I.
title_short Thin systems of generators of groups
title_full Thin systems of generators of groups
title_fullStr Thin systems of generators of groups
title_full_unstemmed Thin systems of generators of groups
title_sort thin systems of generators of groups
author Lutsenko, I.
author_facet Lutsenko, I.
publishDate 2010
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description A subset T of a group G with the identity e is called k-thin (k∈N) if |A∩gA| ≤ k, |A∩Ag| ≤ k for every g∈G, g≠e. We show that every infinite group G can be generated by some 2-thin subset. Moreover, if G is either Abelian or a torsion group without elements of order 2, then there exists a 1-thin system of generators of G. For every infinite group G, there exist a 2-thin subset X such that G=XX⁻¹ ∪ X⁻¹X, and a 4-thin subset Y such that G=YY⁻¹.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/154507
citation_txt Thin systems of generators of groups / I. Lutsenko // Algebra and Discrete Mathematics. — 2010. — Vol. 9, № 2. — С. 106–112. — Бібліогр.: 6 назв. — англ.
work_keys_str_mv AT lutsenkoi thinsystemsofgeneratorsofgroups
first_indexed 2025-12-07T19:21:21Z
last_indexed 2025-12-07T19:21:21Z
_version_ 1850878493332602880