Thin systems of generators of groups
A subset T of a group G with the identity e is called k-thin (k∈N) if |A∩gA| ≤ k, |A∩Ag| ≤ k for every g∈G, g≠e. We show that every infinite group G can be generated by some 2-thin subset. Moreover, if G is either Abelian or a torsion group without elements of order 2, then there exists a 1-thin sys...
Saved in:
| Published in: | Algebra and Discrete Mathematics |
|---|---|
| Date: | 2010 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2010
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/154507 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Thin systems of generators of groups / I. Lutsenko // Algebra and Discrete Mathematics. — 2010. — Vol. 9, № 2. — С. 106–112. — Бібліогр.: 6 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-154507 |
|---|---|
| record_format |
dspace |
| spelling |
Lutsenko, I. 2019-06-15T16:21:07Z 2019-06-15T16:21:07Z 2010 Thin systems of generators of groups / I. Lutsenko // Algebra and Discrete Mathematics. — 2010. — Vol. 9, № 2. — С. 106–112. — Бібліогр.: 6 назв. — англ. 1726-3255 2000 Mathematics Subject Classification:20F05, 20F99. https://nasplib.isofts.kiev.ua/handle/123456789/154507 A subset T of a group G with the identity e is called k-thin (k∈N) if |A∩gA| ≤ k, |A∩Ag| ≤ k for every g∈G, g≠e. We show that every infinite group G can be generated by some 2-thin subset. Moreover, if G is either Abelian or a torsion group without elements of order 2, then there exists a 1-thin system of generators of G. For every infinite group G, there exist a 2-thin subset X such that G=XX⁻¹ ∪ X⁻¹X, and a 4-thin subset Y such that G=YY⁻¹. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics Thin systems of generators of groups Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Thin systems of generators of groups |
| spellingShingle |
Thin systems of generators of groups Lutsenko, I. |
| title_short |
Thin systems of generators of groups |
| title_full |
Thin systems of generators of groups |
| title_fullStr |
Thin systems of generators of groups |
| title_full_unstemmed |
Thin systems of generators of groups |
| title_sort |
thin systems of generators of groups |
| author |
Lutsenko, I. |
| author_facet |
Lutsenko, I. |
| publishDate |
2010 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
A subset T of a group G with the identity e is called k-thin (k∈N) if |A∩gA| ≤ k, |A∩Ag| ≤ k for every g∈G, g≠e. We show that every infinite group G can be generated by some 2-thin subset. Moreover, if G is either Abelian or a torsion group without elements of order 2, then there exists a 1-thin system of generators of G. For every infinite group G, there exist a 2-thin subset X such that G=XX⁻¹ ∪ X⁻¹X, and a 4-thin subset Y such that G=YY⁻¹.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/154507 |
| citation_txt |
Thin systems of generators of groups / I. Lutsenko // Algebra and Discrete Mathematics. — 2010. — Vol. 9, № 2. — С. 106–112. — Бібліогр.: 6 назв. — англ. |
| work_keys_str_mv |
AT lutsenkoi thinsystemsofgeneratorsofgroups |
| first_indexed |
2025-12-07T19:21:21Z |
| last_indexed |
2025-12-07T19:21:21Z |
| _version_ |
1850878493332602880 |