Thin systems of generators of groups

A subset T of a group G with the identity e is called k-thin (k∈N) if |A∩gA| ≤ k, |A∩Ag| ≤ k for every g∈G, g≠e. We show that every infinite group G can be generated by some 2-thin subset. Moreover, if G is either Abelian or a torsion group without elements of order 2, then there exists a 1-thin sys...

Full description

Saved in:
Bibliographic Details
Published in:Algebra and Discrete Mathematics
Date:2010
Main Author: Lutsenko, I.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2010
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/154507
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Thin systems of generators of groups / I. Lutsenko // Algebra and Discrete Mathematics. — 2010. — Vol. 9, № 2. — С. 106–112. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine

Similar Items