Thin systems of generators of groups
A subset T of a group G with the identity e is called k-thin (k∈N) if |A∩gA| ≤ k, |A∩Ag| ≤ k for every g∈G, g≠e. We show that every infinite group G can be generated by some 2-thin subset. Moreover, if G is either Abelian or a torsion group without elements of order 2, then there exists a 1-thin sys...
Saved in:
| Published in: | Algebra and Discrete Mathematics |
|---|---|
| Date: | 2010 |
| Main Author: | Lutsenko, I. |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2010
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/154507 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Thin systems of generators of groups / I. Lutsenko // Algebra and Discrete Mathematics. — 2010. — Vol. 9, № 2. — С. 106–112. — Бібліогр.: 6 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Thin systems of generators of groups
by: Lutsenko, Ievgen
Published: (2018) -
Thin systems of generators of groups
by: Lutsenko, Ievgen
Published: (2018) -
Relatively thin and sparse subsets of groups
by: Lutsenko, Ie., et al.
Published: (2011) -
Thin Subsets of Groups
by: I. V. Protasov, et al.
Published: (2013) -
Thin Subsets of Groups
by: Protasov, I.V., et al.
Published: (2013)