Preradical and kernel functors over categories of S−acts

We concider the big lattices of preradicals and kernel functors over some cathegories of centered S−acts, where S is monoid whit zero. We prove that those big lattices are two elements if and only if monoid S− is groups with zero. A subset of a Rees generated pretorsion theory is a subquantale of qu...

Full description

Saved in:
Bibliographic Details
Date:2010
Main Authors: Komarnitskiy, M., Oliynyk, R.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2010
Series:Algebra and Discrete Mathematics
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/154585
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Preradical and kernel functors over categories of S−acts / M. Komarnitskiy, R. Oliynyk // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 1. — С. 57–66. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:We concider the big lattices of preradicals and kernel functors over some cathegories of centered S−acts, where S is monoid whit zero. We prove that those big lattices are two elements if and only if monoid S− is groups with zero. A subset of a Rees generated pretorsion theory is a subquantale of quantale of pretorsion theory.