Some properties of nilpotent groups
Property S, a finiteness property which can hold in infinite groups, was introduced by Stallings and others and shown to hold in free groups. In [2] it was shown to hold in nilpotent groups as a consequence of a technical result of Mal'cev. In that paper this technical result was dubbed propert...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2009 |
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2009
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/154599 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Some properties of nilpotent groups / A.M. Gaglione, S. Lipschutz, D. Spellman // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 4. — С. 66–77. — Бібліогр.: 8 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | Property S, a finiteness property which can hold in infinite groups, was introduced by Stallings and others and shown to hold in free groups. In [2] it was shown to hold in nilpotent groups as a consequence of a technical result of Mal'cev. In that paper this technical result was dubbed property R. Hence, more generally, any property R group satisfies property S. In [7] it was shown that property R implies the following (labeled there weak property R) for a group G: If G₀ is any subgroup in G and G₀* is any homomorphic image of G₀, then the set of torsion elements in G₀* forms a locally finite subgroup. It was left as an open question in [7] whether weak property R is equivalent to property R. In this paper we give an explicit counterexample thereby proving that weak property R is strictly weaker than property R.
|
|---|---|
| ISSN: | 1726-3255 |