Some properties of nilpotent groups

Property S, a finiteness property which can hold in infinite groups, was introduced by Stallings and others and shown to hold in free groups. In [2] it was shown to hold in nilpotent groups as a consequence of a technical result of Mal'cev. In that paper this technical result was dubbed propert...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2009
Hauptverfasser: Gaglione, A.M., Lipschutz, S., Spellman, D.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2009
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/154599
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Some properties of nilpotent groups / A.M. Gaglione, S. Lipschutz, D. Spellman // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 4. — С. 66–77. — Бібліогр.: 8 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-154599
record_format dspace
spelling Gaglione, A.M.
Lipschutz, S.
Spellman, D.
2019-06-15T16:41:10Z
2019-06-15T16:41:10Z
2009
Some properties of nilpotent groups / A.M. Gaglione, S. Lipschutz, D. Spellman // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 4. — С. 66–77. — Бібліогр.: 8 назв. — англ.
1726-3255
2000 Mathematics Subject Classification:20F18,20F05,20F24,16D10.
https://nasplib.isofts.kiev.ua/handle/123456789/154599
Property S, a finiteness property which can hold in infinite groups, was introduced by Stallings and others and shown to hold in free groups. In [2] it was shown to hold in nilpotent groups as a consequence of a technical result of Mal'cev. In that paper this technical result was dubbed property R. Hence, more generally, any property R group satisfies property S. In [7] it was shown that property R implies the following (labeled there weak property R) for a group G: If G₀ is any subgroup in G and G₀* is any homomorphic image of G₀, then the set of torsion elements in G₀* forms a locally finite subgroup. It was left as an open question in [7] whether weak property R is equivalent to property R. In this paper we give an explicit counterexample thereby proving that weak property R is strictly weaker than property R.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Some properties of nilpotent groups
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Some properties of nilpotent groups
spellingShingle Some properties of nilpotent groups
Gaglione, A.M.
Lipschutz, S.
Spellman, D.
title_short Some properties of nilpotent groups
title_full Some properties of nilpotent groups
title_fullStr Some properties of nilpotent groups
title_full_unstemmed Some properties of nilpotent groups
title_sort some properties of nilpotent groups
author Gaglione, A.M.
Lipschutz, S.
Spellman, D.
author_facet Gaglione, A.M.
Lipschutz, S.
Spellman, D.
publishDate 2009
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description Property S, a finiteness property which can hold in infinite groups, was introduced by Stallings and others and shown to hold in free groups. In [2] it was shown to hold in nilpotent groups as a consequence of a technical result of Mal'cev. In that paper this technical result was dubbed property R. Hence, more generally, any property R group satisfies property S. In [7] it was shown that property R implies the following (labeled there weak property R) for a group G: If G₀ is any subgroup in G and G₀* is any homomorphic image of G₀, then the set of torsion elements in G₀* forms a locally finite subgroup. It was left as an open question in [7] whether weak property R is equivalent to property R. In this paper we give an explicit counterexample thereby proving that weak property R is strictly weaker than property R.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/154599
citation_txt Some properties of nilpotent groups / A.M. Gaglione, S. Lipschutz, D. Spellman // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 4. — С. 66–77. — Бібліогр.: 8 назв. — англ.
work_keys_str_mv AT gaglioneam somepropertiesofnilpotentgroups
AT lipschutzs somepropertiesofnilpotentgroups
AT spellmand somepropertiesofnilpotentgroups
first_indexed 2025-12-07T20:45:01Z
last_indexed 2025-12-07T20:45:01Z
_version_ 1850883756494159872